GEOMETRY

Ron Larson Laurie Boswell Timothy D. Kanold Lee Stiff

GEOMETRY

In *Geometry*, you will develop reasoning and problem solving skills as you study topics such as congruence and similarity, and apply properties of lines, triangles, quadrilaterals, and circles. You will also develop problem solving skills by using length, perimeter, area, circumference, surface area, and volume to solve real-world problems.

In addition to its geometry content, *Geometry* includes numerous examples and exercises involving algebra, data analysis, and probability. These math topics often appear on standardized tests, so maintaining your familiarity with them is important. To help you prepare for standardized tests, *Geometry* provides instruction and practice on standardized test questions in a variety of formats—multiple choice, short response, extended response, and so on. Technology support for both learning geometry and preparing for standardized tests is available at classzone.com.

Copyright © 2007 McDougal Littell, a division of Houghton Mifflin Company.

All rights reserved.

Warning: No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the prior written permission of McDougal Littell unless such copying is expressly permitted by federal copyright law. Address inquiries to Supervisor, Rights and Permissions, McDougal Littell, P.O. Box 1667, Evanston, IL 60204.

ISBN-13: 978-0-6185-9540-2 ISBN-10: 0-618-59540-6 123456789—DWO—09 08 07 06 05

Internet Web Site: http://www.mcdougallittell.com

About the Authors

Ron Larson is a professor of mathematics at Penn State University at Erie, where he has taught since receiving his Ph.D. in mathematics from the University of Colorado. Dr. Larson is well known as the author of a comprehensive program for mathematics that spans middle school, high school, and college courses. Dr. Larson's numerous professional activities keep him in constant touch with the needs of teachers and supervisors. He closely follows developments in mathematics standards and assessment.

Laurie Boswell is a mathematics teacher at The Riverside School in Lyndonville, Vermont, and has taught mathematics at all levels, elementary through college. A recipient of the Presidential Award for Excellence in Mathematics Teaching, she was also a Tandy Technology Scholar. She served on the NCTM Board of Directors (2002–2005), and she speaks frequently at regional and national conferences on topics related to instructional strategies and course content.

Timothy D. Kanold is the superintendent of Adlai E. Stevenson High School District 125 in Lincolnshire, Illinois. Dr. Kanold served as a teacher and director of mathematics for 17 years prior to becoming superintendent. He is the recipient of the Presidential Award for Excellence in Mathematics and Science Teaching, and a past president of the Council for Presidential Awardees in Mathematics. Dr. Kanold is a frequent speaker at national and international mathematics meetings.

Lee Stiff is a professor of mathematics education in the College of Education and Psychology of North Carolina State University at Raleigh and has taught mathematics at the high school and middle school levels. He served on the NCTM Board of Directors and was elected President of NCTM for the years 2000–2002. He is a recipient of the W. W. Rankin Award for Excellence in Mathematics Education presented by the North Carolina Council of Teachers of Mathematics.

Advisers and Reviewers

Curriculum Advisers and Reviewers

Vincent J. Bondi Mathematics Department Chair Radnor High School Radnor, PA

John Fishpaw

Mathematics Department Chair Austin Academy for Excellence Garland, TX

Matthew C. Hill

Mathematics Teacher Plains High School Plains, TX

Patrick Hopfensperger

Mathematics Specialist Homestead High School Mequon, WI

Robin Jenkins

Mathematics Teacher Hillcrest High School Springfield, MO

Anne Papakonstantinou

Director, School Mathematics Project Rice University Houston, TX

Richard Parr

Director of Educational Technology, School Mathematics Project Rice University Houston, TX

Katherine G. Petersen

Mathematics Teacher Hammond School Columbia, SC

Alice Rau

Mathematics Teacher Francis Scott Key High School Union Bridge, MD

Diane Sorrels

Mathematics Department Chair and Teacher Robert E. Lee High School Tyler, TX

Ohio Panel

Todd Brenn Mathematics Teacher Roosevelt High School Kent, OH

Sinetta Maul Mathematics Teacher Ashland High School Ashland, OH

Cathy J. Miller Mathematics Teacher Copley High School Copley, OH **Jeff Neuman** Mathematics Teacher Brunswick High School Brunswick, OH

Bruce Olson Mathematics Teacher Canal Winchester High School Canal Winchester, OH

Julia Pfeil Mathematics Teacher Colonel White High School for the Arts Dayton, OH

Carlo T. Trafficante

Mathematics Teacher Austintown Fitch High School Austintown, OH

Andrew Tripoulas

Mathematics Teacher Warren G. Harding High School Warren, OH

Vicki L. White Mathematics Teacher Strongsville High School Strongsville, OH

Texas Panel

Nancy Arroyo Mathematics Department Chair Riverside High School El Paso, TX

Juan A. Cardenas Mathematics Department Chair Sam Houston High School San Antonio, TX

Rita Hines Freeman Mathematics Teacher Townview Science and Engineering Magnet High School Dallas, TX Whitney Hendriex Mathematics Specialist Lee High School Midland, TX

Betsy A. Norris Mathematics Teacher Southwest High School Ft. Worth, TX

Janell O'Loughlin Mathematics Department Chair Pasadena High School Pasadena, TX Shauna Suggs Mathematics Teacher R.L. Turner High School Carrollton, TX

Richard Treviño Mathematics Teacher Martin High School Laredo, TX

Patricia Winkler

Mathematics Teacher and Instructional Technologist Michael E. DeBakey High School Houston, TX Unit 1 Points, Lines, and Planes

CHAPTER

Segment Addition Postulate, p. 14 AC = AB + BC

vvii

Essentials of Geometry

	reception of the second s	~~!!
1.1	Identify Points, Lines, and Planes	2
1.2	Use Segments and Congruence	9
1.3	Use Midpoint and Distance Formulas Mixed Review of Problem Solving	. 15 . 23
1.4	Measure and Classify Angles Investigating Geometry Construction: Copy and Bisect Segments and Angles	. 24 . 33
1.5	Describe Angle Pair Relationships	. 35
1.6	Classify Polygons	. 42
1.7	Find Perimeter, Circumference, and Area Investigating Geometry Activity: Investigate Perimeter and Area Problem Solving Workshop Mixed Review of Problem Solving	. 49 . 48 . 57 . 58

ASSESSMENT

Prerequisite Skills

Quizzes	. 22, 41, 56
Chapter Summary and Review	
Chapter Test	64
Algebra Review: Solve Linear Equations and Word Problems	65
★ Standardized Test Preparation and Practice	66
St. implement	

Chapter 1 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 23, 58
- Multiple Representations, 41, 55, 57
- Multi-Step Problems, 8, 14, 23, 46, 54, 55, 58
- Using Alternative Methods, 57
- Real-World Problem Solving Examples, 10, 15, 27, 36, 44, 51, 65

★ ASSESSMENT

- Standardized Test Practice Examples, 18, 50
- Multiple Choice, 6, 13, 20, 29, 39, 44, 46, 53
- Short Response/Extended Response, 7, 12, 14, 20, 22, 23, 30, 32, 40, 47, 54, 55, 58, 66
- Writing/Open-Ended, 5, 12, 19, 23, 28, 38, 44, 52, 58

Ø TECHNOLOGY

- Animated Geometry, 1, 3, 14, 21, 25, 43, 52
- **@Home Tutor,** xxii, 7, 13, 21, 31, 40, 46, 48, 54, 60
- Online Quiz, 8, 14, 22, 32, 41, 47, 56
- Animated Algebra (Algebra Review), 65
- State Test Practice, 23, 58, 69

CHAPTER

Unit 1 Points, Lines, and Planes

Reasoning and Proof

	Prerequisite Skills
2.1	Use Inductive Reasoning
2.2	Analyze Conditional Statements
2.3	Apply Deductive Reasoning.87O Investigating Geometry Activity: Logic Puzzles86
2.4	Use Postulates and Diagrams
2.5	Reason Using Properties from Algebra105P Investigating Geometry Activity: Justify a Number Trick104
2.6	Prove Statements about Segments and Angles
2.7	Prove Angle Pair Relationships 124 Investigating Geometry Activity: Angles and Intersecting Lines 122 Mixed Review of Problem Solving 132

ASSESSMENT

Animated Geometry

classzone.com

Quizzes	93, 111, 131
Chapter Summary and Review	
Chapter Test	
Algebra Review: Simplify Rational and Radical Expressions	
★ Standardized Test Preparation and Practice	

Chapter 2 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 103, 132
- Multiple Representations, 77, 111, 120
- Multi-Step Problems, 85, 102, 103, 110, 119, 130, 132
- Using Alternative Methods, 120
- Real-World Problem Solving Examples, 74, 89, 106, 115

★ ASSESSMENT

- Standardized Test Practice Examples, 74, 127
- Multiple Choice, 75, 76, 83, 90, 99, 100, 109, 116, 128
- Short Response/Extended Response, 76, 78, 84, 92, 101, 102, 103, 110, 117, 119, 128, 130, 132, 140
- Writing/Open-Ended, 75, 82, 84, 90, 99, 100, 108, 109, 116, 127, 129, 132

Ø TECHNOLOGY

- Animated Geometry, 71, 72, 81, 88, 97, 106, 119, 125
- **@Home Tutor,** 70, 77, 84, 91, 101, 110, 118, 123, 129, 134
- Online Quiz, 78, 85, 93, 102, 111, 119, 131
- Animated Algebra, 139
- State Test Practice, 103, 132, 143

CHAPTER

3

Unit 1 Points, Lines, and Planes

Applying Slope, p. 174 Slope $=\frac{41}{80}$

Parallel and Perpendicular Lines

Prerequisite Skills1443.1Identify Pairs of Lines and Angles147> Investigating Geometry Activity: Draw and Interpret Lines1463.2Use Parallel Lines and Transversals154Investigating Geometry Activity: Parallel Lines and Angles1533.3Prove Lines are Parallel161Mixed Review of Problem Solving1703.4Find and Use Slopes of Lines171Technology ActivityInvestigate Slopes1793.5Write and Graph Equations of Lines180Problem Solving Workshop1883.6Prove Theorems about Perpendicular Lines190Mixed Review of Problem Solving200

ASSESSMENT

Quizzes	. 160, 178, 197
Chapter Summary and Review	201
Chapter Test.	206
Algebra Review: Graph and Solve Linear Inequalities	207
Standardized Test Preparation and Practice	208
Cumulative Review, Chapters 1–3	212

Chapter 3 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 170, 200
- Multiple Representations, 174, 177, 188
- Multi-Step Problems, 166, 168, 170, 177, 186, 200
- Using Alternative Methods, 188
- Real-World Problem Solving Examples, 148, 156, 162, 164, 174, 182, 183, 193, 207

★ ASSESSMENT

- Standardized Test Practice Example, 173
- Multiple Choice, 151, 157, 158, 166, 176, 184, 185, 195, 208
- Short Response/Extended Response, 152, 158, 159, 166, 168, 169, 170, 176, 178, 187, 194, 196, 200
- Writing/Open-Ended, 150, 151, 157, 165, 170, 175, 184, 195, 200

Ø TECHNOLOGY

- Animated Geometry, 145, 148, 155, 163, 174, 181
- **@Home Tutor,** 144, 151, 153, 159, 167, 176, 179, 186, 196, 202
- Online Quiz, 152, 160, 169, 178, 187, 197
- Animated Algebra, 207
- State Test Practice, 170, 200, 211

Unit 2 Triangles

CHAPTER

Indirect Measurement, p. 257 $\triangle MLK \cong \triangle MPN$

Congruent Triangles

	Prerequisite Skills	214
4.1	Apply Triangle Sum Properties Investigating Geometry Activity: Angle Sums in Triangles	217 216
4.2	Apply Congruence and Triangles. Problem Solving Workshop	225 232
4.3	Prove Triangles Congruent by SSS	234 233
4.4	Prove Triangles Congruent by SAS and HL Technology Activity Investigate Triangles and Congruence Mixed Review of Problem Solving	240 247 248
4.5	Prove Triangles Congruent by ASA and AAS	249
4.6	Use Congruent Triangles	256
4.7	Use Isosceles and Equilateral Triangles	264
4.8	Perform Congruence Transformations Investigating Geometry Activity: Investigate Slides and Flips Mixed Review of Problem Solving	272 271 280

ASSESSMENT

Quizzes	239, 263, 279
Chapter Summary and Review	
Chapter Test.	286
Algebra Review: Solve Inequalities and Absolute Value Equa	tions 287
★ Standardized Test Preparation and Practice	288

Animated Geometry classzone.com

Activities...... 215, 234, 242, 250, 256, 257, 274

Chapter 4 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 248, 280
- Multiple Representations, 232
- Multi-Step Problems, 223, 231, 248, 269, 280
- Using Alternative Methods, 232
- Real-World Problem Solving Examples, 220, 226, 236, 242, 251, 257, 266, 274

★ ASSESSMENT

- Standardized Test Practice Examples, 235, 251
- Multiple Choice, 222, 223, 229, 237, 243, 246, 253, 260, 261, 268, 279, 288
- Short Response/Extended Response, 221, 224, 230, 231, 238, 248, 253, 254, 262, 267, 268, 270, 278, 280
- Writing/Open-Ended, 221, 228, 229, 230, 243, 244, 248, 252, 259, 267, 276, 277, 278, 280

TECHNOLOGY

At classzone.com:

- Animated Geometry, 215, 234, 242, 250, 256, 257, 274
- @Home Tutor, 214, 223, 230, 238, 245, 247, 254, 261, 269, 278, 282
- Online Quiz, 224, 231, 239, 246, 255, 263, 270, 279
- Animated Algebra, 287
- State Test Practice, 248, 280, 291

CHAPTER 55 Unit 2

Triangles

Inequalities in Triangles, p. 336 $150^\circ > 135^\circ$

Relationships within Triangles

	Prerequisite Skills	292
5.1	Midsegment Theorem and Coordinate Proof Investigating Geometry Activity: Investigate Segments in Triangles Problem Solving Workshop	295 294 302
5.2	Use Perpendicular Bisectors	303
5.3	Use Angle Bisectors of Triangles Mixed Review of Problem Solving	310 317
5.4	Use Medians and Altitudes	319 318 326
5.5	Use Inequalities in a Triangle	328
5.6	Inequalities in Two Triangles and Indirect Proof Mixed Review of Problem Solving	335 342

ASSESSMENT

Quizzes	309, 325, 341
Chapter Summary and Review	343
Chapter Test.	348
Algebra Review: Use Ratios and Percent of Change	349
Standardized Test Preparation and Practice	350

Activities...... 293, 296, 304, 312, 321, 330, 336

Chapter 5 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 317, 342
- Multiple Representations, 302
- Multi-Step Problems, 301, 317, 342
- Using Alternative Methods, 302
- Real-World Problem Solving Examples, 295, 305, 311, 329, 336, 349

★ ASSESSMENT

- Standardized Test Practice Examples, 320, 329
- Multiple Choice, 299, 307, 314, 322, 331, 332, 339
- Short Response/Extended Response, 300, 308, 315, 317, 323, 324, 332, 333, 334, 339, 340, 342, 350
- Writing/Open-Ended, 298, 306, 313, 317, 322, 331, 338, 342

🕖 TECHNOLOGY

- Animated Geometry, 293, 296, 304, 312, 321, 330, 336
- **@Home Tutor,** 292, 300, 308, 315, 324, 327, 333, 340, 344
- Online Quiz, 301, 309, 316, 325, 334, 341
- Animated Algebra, 349
- State Test Practice, 317, 342, 353

CHAPTER

Unit 2 Triangles Applying Similar Triangles, p. 394 $\frac{66 \text{ in.}}{7 \text{ ft}} = \frac{x \text{ in.}}{102 \text{ ft}}$

_

Similarity

wisite Skills

	Prerequisite Skills	354
6.1	Ratios, Proportions, and the Geometric Mean	356
6.2	Use Proportions to Solve Geometry Problems	364
6.3	Use Similar Polygons. Investigating Geometry Activity: Similar Polygons. Mixed Review of Problem Solving	372 371 380
6.4	Prove Triangles Similar by AA	381
6.5	Prove Triangles Similar by SSS and SAS	388
6.6	Use Proportionality Theorems Investigating Geometry Activity: Investigate Proportionality Problem Solving Workshop	397 396 404
6.7	Perform Similarity Transformations Investigating Geometry Activity: Dilations Mixed Review of Problem Solving	409 408 416

ASSESSMENT

Quizzes	
Chapter Summary and Review	417
Chapter Test	
Algebra Review: Solve Quadratic Equations and Si	mplify Radicals 423
★ Standardized Test Preparation and Practice	
Cumulative Review, Chapters 1–6	

Animated Geometry classzone.com

Chapter 6 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 380, 416
- Multiple Representations, 363, 378, 404
- Multi-Step Problems, 362, 378, 380, 385, 394, 402, 414, 416
- Using Alternative Methods, 404
- Real-World Problem Solving Examples, 357, 359, 365, 366, 374, 390, 398, 410

★ ASSESSMENT

- Standardized Test Practice Examples, 383, 411
- Multiple Choice, 361, 368, 376, 377, 384, 385, 392, 400, 401, 412, 413
- Short Response/Extended Response, 361, 363, 377, 379, 380, 386, 387, 394, 402, 403, 413, 414, 415, 416, 424
- Writing/Open-Ended, 360, 367, 376, 380, 384, 385, 391, 394, 400, 412, 414, 416

TECHNOLOGY

- Animated Geometry, 355, 365, 375, 391, 394, 407, 414
- @Home Tutor, 354, 362, 368, 378, 386, 393, 396, 402, 414, 418
- Online Quiz, 363, 370, 379, 387, 395, 403, 415
- Animated Algebra, 423
- State Test Practice, 380, 416, 427

CHAPTER

Unit 3 Figures in the Plane

Angle of Elevation, p. 475 $\sin 21^\circ = \frac{opp.}{hyp.}$

Right Triangles and Trigonometry

	Prerequisite Skills	430
7.1	Apply the Pythagorean Theorem	433 432
7.2	Use the Converse of the Pythagorean Theorem Investigating Geometry Activity: Converse of the Pythagorean Theorem	441 440
7.3	Use Similar Right Triangles	449 448
7.4	Special Right Triangles Mixed Review of Problem Solving	457 465
7.5	Apply the Tangent Ratio	466
7.6	Apply the Sine and Cosine Ratios Problem Solving Workshop	473 481
7.7	Solve Right Triangles Mixed Review of Problem Solving	483 492

ASSESSMENT

Quizzes	447, 464, 489
Chapter Summary and Review	493
Chapter Test	498
Algebra Review: Graph and Solve Quadratic Equations	499
Standardized Test Preparation and Practice	500

Animated Geometry classzone.com

Activities....... 431, 434, 442, 450, 460, 462, 475

Chapter 7 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 465, 492
- Multiple Representations, 439, 480, 481, 488
- Multi-Step Problems, 438, 445, 456, 463, 465, 471, 479, 488, 492
- Using Alternative Methods, 481
- Real-World Problem Solving Examples, 434, 443, 450, 452, 459, 460, 468, 474, 475, 476, 485

★ ASSESSMENT

- Standardized Test Practice Examples, 434, 458
- Multiple Choice, 437, 438, 444, 454, 461, 462, 470, 478, 486, 487, 500
- Short Response/Extended Response, 438, 439, 446, 447, 455, 456, 463, 464, 465, 471, 472, 479, 487, 488, 492
- Writing/Open-Ended, 436, 444, 445, 453, 461, 462, 469, 477, 478, 485, 487, 488

Ø TECHNOLOGY

- Animated Geometry, 431, 434, 442, 450, 460, 462, 475
- **@Home Tutor,** 430, 438, 440, 445, 455, 463, 471, 479, 487, 494
- Online Quiz, 439, 447, 456, 464, 472, 480, 489
- Animated Algebra, 499
- State Test Practice, 465, 492, 503

8.1	Find Angle Measures in Polygons	507 506
8.2	Use Properties of Parallelograms	515 514
8.3	Show that a Quadrilateral is a Parallelogram Problem Solving Workshop Mixed Review of Problem Solving	522 530 532
8.4	Properties of Rhombuses, Rectangles, and Squares	533
8.5	Use Properties of Trapezoids and Kites	542 541
8.6	Identify Special Quadrilaterals Mixed Review of Problem Solving	552 558

ASSESSMENT

classzone.com

Quizzes		521, 540, 557
Chapter Summary and	Review	559
Chapter Test		564
Algebra Review: Graph	Nonlinear Functions	565
Standardized Test Prepared	aration and Practice	566
Animated Geometr	Y Activities 505, 509, 519, 527,	535, 545, 551, 553

Cha

Chapter 8 Highlights		
PROBLEM SOLVING	* A9	
• Mixed Review of Problem Solving, 532, 558	• Standardized 7 509, 517, 553	
• Multiple Representations, 513, 530	Multiple Choic	
• Multi-Step Problems, 512, 532, 539, 556,	546, 547, 554, 5	
558	Short Response	

- Using Alternative Methods, 530
- Real-World Problem Solving Examples, 510, 517, 523, 524, 536, 543, 545

SESSMENT

- **Fest Practice Examples**,
- e, 511, 518, 519, 527, 538, 66
- e/Extended Response, 511, 513, 519, 526, 529, 532, 538, 540, 547, 548, 556, 558
- Writing/Open-Ended, 510, 518, 520, 526, 537, 546, 554, 558

TECHNOLOGY

At classzone.com:

- Animated Geometry, 505, 509, 519, 527, 535, 545, 551, 553
- @Home Tutor, 504, 512, 514, 520, 528, 539, 541, 548, 556, 560
- Online Quiz, 513, 521, 529, 540, 549, 557
- Animated Algebra, 565
- State Test Practice, 532, 558, 569

Unit 3 Figures in the Plane

Properties of Transformations

	Prerequisite Skills	570
9 .1	Translate Figures and Use Vectors	572
9.2	Use Properties of Matrices	580
9.3	Perform Reflections Investigating Geometry Activity: Reflections in the Plane Mixed Review of Problem Solving	589 588 597
9.4	Perform Rotations Problem Solving Workshop	598 606
9.5	Apply Compositions of Transformations	608 607
9.6	Identify Symmetry	619
9.7	Identify and Perform Dilations Investigating Geometry Activity: Investigate Dilations Technology Activity Mixed Review of Problem Solving	626 625 633 634

ASSESSMENT

Quizzes	587, 615, 632
Chapter Summary and Review	
Chapter Test	640
Algebra Review: Multiply Binomials and Use Quadratic Formula	641
★ Standardized Test Preparation and Practice	642
Cumulative Review, Chapters 1–9	646

Animated Geometry classzone.com

Activities... 571, 582, 590, 599, 602, 611, 619, 626

Chapter 9 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 597, 634
- Multiple Representations, 606
- Multi-Step Problems, 577, 579, 586, 597, 605, 615, 624, 631, 634
- Using Alternative Methods, 606
- Real-World Problem Solving Examples, 575, 583, 591

★ ASSESSMENT

- Standardized Test Practice Examples, 601, 621
- Multiple Choice, 576, 584, 585, 593, 603, 613, 622, 630
- Short Response/Extended Response, 578, 586, 594, 596, 597, 603, 605, 614, 623, 630, 634, 642
- Writing/Open-Ended, 576, 584, 585, 593, 597, 602, 611, 613, 621, 623, 629, 630, 631, 634

Ø TECHNOLOGY

- Animated Geometry, 571, 582, 590, 599, 602, 611, 617, 619, 626
- @Home Tutor, 570, 578, 586, 595, 604, 607, 613, 623, 631, 633, 636
- Online Quiz, 579, 587, 596, 605, 615, 624, 632
- Animated Algebra, 641
- State Test Practice, 597, 634, 645

CHAPTER Tangents and Secants, p. 692 $DC \cdot DB = AD^2$ Unit 4 Circles and Measurement

Properties of Circles

Prerequisite Skills	. 648
10.1 Use Properties of Tangents	. 651
Investigating Geometry Activity: Explore Tangent Segments	. 650
10.2 Find Arc Measures	. 659
10.3 Apply Properties of Chords	. 664
10.4 Use Inscribed Angles and Polygons	. 672
Investigating Geometry Activity: Explore Inscribed Angles	. 671
10.5 Apply Other Angle Relationships in Circles	. 680
Mixed Review of Problem Solving	. 687
10.6 Find Segment Lengths in Circles	. 689
📗 Investigating Geometry Activity: Investigate Segment Lengths	. 688
Problem Solving Workshop	. 696
10.7 Write and Graph Equations of Circles	. 699
Mixed Review of Problem Solving	. 706

ASSESSMENT

classzone.com

Ouizzes		670, 686, 705
Chapter Summary and Re	eview	
Chapter Test		
Algebra Review: Factor B	inomials and Trinomials	
★ Standardized Test Prepar	ration and Practice	
Animatea Geometry	Activities 649, 655, 661, 67	71, 682, 691, 701

Chapter 10 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 687,706
- Multiple Representations, 696
- Multi-Step Problems, 669, 687, 706
- Using Alternative Methods, 696
- Real-World Problem Solving Examples, 660, 665, 674, 682, 692, 701

★ ASSESSMENT

- Standardized Test Practice Examples, 673,690
- Multiple Choice, 656, 662, 667, 677, 683, 693, 702, 703, 714
- Short Response/Extended Response, 657, 662, 663, 678, 684, 685, 687, 694, 695, 704, 706
- Writing/Open-Ended, 655, 661, 667, 668, 669, 676, 678, 683, 684, 687, 692, 702

Ø TECHNOLOGY

At <u>classzone.com</u>:

- Animated Geometry, 649, 655, 661, 671, 682, 691, 701
- @Home Tutor, 648, 657, 663, 669, 677, 685, 688, 694, 703, 704, 708
- Online Quiz, 658, 663, 670, 679, 686, 695,705
- Animated Algebra, 713
- State Test Practice, 687, 706, 717

~ ~ ~

Unit 4 Circles and Measurement

CHAPTER

Arc Length, p. 749 2(84.39) + 2 $\left(\frac{1}{2} \cdot 2\pi \cdot 36.8\right)$

Measuring Length and Area

Prerequisite Skills	718
11.1 Areas of Triangles and Parallelograms	720
11.2 Areas of Trapezoids, Rhombuses, and Kites	730 729
11.3 Perimeter and Area of Similar Figures Problem Solving Workshop Mixed Review of Problem Solving	737 744 745
11.4 Circumference and Arc Length	746
11.5 Areas of Circles and Sectors	755
11.6 Areas of Regular Polygons	762 769
11.7 Use Geometric Probability Investigating Geometry Activity: Investigate Geometric Probability Mixed Review of Problem Solving	771 770 778

ASSESSMENT

Quizzes	743, 761, 777
Chapter Summary and Review	
Chapter Test	
Algebra Review: Use Algebraic Models to Solve Problems	
Standardized Test Preparation and Practice	

Animated Geometry classzone.com

Chapter 11 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 745, 778
- Multiple Representations, 744
- Multi-Step Problems, 726, 735, 742, 745, 778
- Using Alternative Methods, 744
- Real-World Problem Solving Examples, 722, 730, 738, 739, 747, 749, 763, 772, 773, 785

★ ASSESSMENT

- Standardized Test Practice Examples, 732, 738, 757
- Multiple Choice, 724, 733, 740, 742, 751, 759, 765, 775
- Short Response/Extended Response, 725, 726, 735, 736, 741, 743, 745, 751, 752, 760, 766, 768, 776, 778, 786
- Writing/Open-Ended, 723, 724, 733, 734, 740, 743, 745, 749, 758, 765, 774, 778

TECHNOLOGY

- Animated Geometry, 719, 720, 739, 749, 759, 765, 771
- **@Home Tutor,** 718, 725, 735, 742, 751, 760, 767, 769, 776, 780
- Online Quiz, 726, 736, 743, 752, 761, 768, 777
- Animated Algebra, 785
- State Test Practice, 745, 778, 789

Surface Area and Volume of Solids

Prerequisite Skills	790
12.1 Explore Solids	794 792
12.2 Surface Area of Prisms and Cylinders	803 802
12.3 Surface Area of Pyramids and Cones. Mixed Review of Problem Solving	810 818
12.4 Volume of Prisms and Cylinders Problem Solving Workshop	819 826
 12.5 Volume of Pyramids and Cones O Investigating Geometry Activity: Investigate the Volume of a Pyramid Spreadsheet Activity Minimize Surface Area. 	829 828 837
12.6 Surface Area and Volume of Spheres	838
12.7 Explore Similar Solids	847 846 855

ASSESSMENT

Quizzes	
Chapter Summary and Review	
Chapter Test	
★ Standardized Test Preparation and Practice	
Cumulative Review, Chapters 1–12	

Animated Geometry classzone.com

Activities... 791, 795, 805, 821, 825, 833, 841, 852

Chapter 12 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 818, 855
- Multiple Representations, 826, 835, 853
 Multi-Step Problems, 800, 809, 816, 818, 824, 835, 844, 852, 855
- Using Alternative Methods, 826
- Real-World Problem Solving Examples, 796, 805, 813, 822, 831, 840, 848, 849

★ ASSESSMENT

- Standardized Test Practice Examples, 813, 839
- Multiple Choice, 799, 807, 808, 815, 822, 824, 832, 833, 842, 843, 850, 851, 862
- Short Response/Extended Response, 800, 808, 809, 816, 818, 825, 834, 844, 853, 855
- Writing/Open-Ended, 798, 806, 814, 818, 822, 832, 842, 850, 852

TECHNOLOGY

- Animated Geometry, 791, 795, 805, 821, 825, 833, 841, 852
- @Home Tutor, 790, 800, 808, 816, 824, 834, 837, 844, 852, 857
- Online Quiz, 801, 809, 817, 825, 836, 845, 854
- State Test Practice, 818, 855, 865

Contents of **Student Resources**

Skills Review Handbook

Operations with Rational Numbers	869	Linear Inequalities	881
Simplifying and Evaluating Expressions	870	Quadratic Equations and Functions	882
Properties of Exponents	871	Functions	884
Using the Distributive Property	872	Problem Solving with Percents	885
Binomial Products	873	Converting Measurements and Rates	886
Radical Expressions	874	Mean, Median, and Mode	887
Solving Linear Equations	875	Displaying Data	888
Solving and Graphing Linear Inequalities	876	Sampling and Surveys	890
Solving Formulas	877	Counting Methods	891
Graphing Points and Lines	878	Probability	893
Slopes and Intercepts of a Line	879	Problem Solving Plan and Strategies	894
Systems of Linear Equations	880		

Extra Practice for Chapters 1–12

pages 896–919

Tables	pages 920–925
Symbols	920
Measures	921
Formulas	922
Squares and Square Roots	924
Trigonometric Ratios	925
Postulates and Theorems	pages 926–931
Additional Proofs	pages 932–938
English-Spanish Glossary	pages 939–980
Index	pages 981–1000
Credits	pages 1001–1003
Worked-Out Solutions	page WS1
Selected Answers	page SA1

Using Your Textbook

Your textbook contains many resources that you can use for reference when you are studying or doing your homework.

IN EVERY CHAPTER

BIG IDEAS The second page of every chapter includes a list of important ideas developed in the chapter. More information about these ideas appears in the Chapter Summary page at the end of the chapter.

POSTULATES AND THEOREMS The Postulate and Theorem notebook displays present geometric properties you will use in reasoning about figures. You may want to copy these statements into your notes.

KEY CONCEPTS The Key Concept notebook displays present main ideas of the lesson. You may want to copy these ideas into your notes.

VOCABULARY New words and review words are listed in a column on the first page of every lesson. Vocabulary terms appear highlighted and in bold print within the lesson. A list of vocabulary appears in the Chapter Review at the end of each chapter.

MIXED REVIEW Every lesson ends with Mixed Review exercises. These exercises help you review earlier lessons and include exercises to prepare you for the next lesson. Page references with the exercises point you to the lessons being reviewed.

- **SKILLS REVIEW HANDBOOK** Use the Skills Review Handbook topics on pages 869–895 to review material learned in previous courses.
- **EXTRA PRACTICE** Use the Extra Practice on pages 896–919 for more exercises or to review a chapter before a test.

TABLES Refer to the tables on pages 920–925 for information about mathematical symbols, measures, formulas, squares, and trigonometric ratios.

- **POSTULATES AND THEOREMS** Refer to pages 926–931 for a complete list of all postulates and theorems presented in the book.
- **ADDITIONAL PROOFS** Refer to pages 932–938 for longer proofs of some of the theorems presented in the book.
- **GLOSSARY** Use the English-Spanish Glossary on pages 939–980 to see definitions in English and Spanish, as well as examples illustrating vocabulary.
- **INDEX** Look up items in the alphabetical Index on pages 981–1000 to find where a particular math topic is covered in the book.

WORKED-OUT SOLUTIONS In each lesson, exercises identified by a red circle have complete worked-out solutions starting on page WS1. These provide a model for what a full solution should include.

SELECTED ANSWERS Use the Selected Answers starting on page SA1 to check your work.

Essentials of Geometry

- 1.1 Identify Points, Lines, and Planes
- 1.2 Use Segments and Congruence
- **1.3** Use Midpoint and Distance Formulas
- 1.4 Measure and Classify Angles
- **1.5** Describe Angle Pair Relationships
- 1.6 Classify Polygons
- 1.7 Find Perimeter, Circumference, and Area

Before

In previous courses, you learned the following skills, which you'll use in Chapter 1: finding measures, evaluating expressions, and solving equations.

Prerequisite Skills

VOCABULARY CHECK

Copy and complete the statement.

- 1. The distance around a rectangle is called its _?_, and the distance around a circle is called its _?_.
- 2. The number of square units covered by a figure is called its _? _.

SKILLS AND ALGEBRA CHECK

Evaluate the expression. (Review p. 870 for 1.2, 1.3, 1.7.)3. |4-6|4. |3-11|5. |-4+5|6. |-8-10|Evaluate the expression when x = 2. (Review p. 870 for 1.3-1.6.)7. 5x8. 20-8x9. -18+3x10. -5x-4+2xSolve the equation. (Review p. 875 for 1.2-1.7.)11. 274 = -2z12. 8x + 12 = 6013. 2y - 5 + 7y = -3214. 6p + 11 + 3p = -715. 8m - 5 = 25 - 2m16. -2n + 18 = 5n - 24

@HomeTutor Prerequisite skills practice at classzone.com

Now

In Chapter 1, you will apply the big ideas listed below and reviewed in the Chapter Summary on page 59. You will also use the key vocabulary listed below.

Big Ideas

- 🚺 Describing geometric figures
- 2 Measuring geometric figures
- Understanding equality and congruence

KEY VOCABULARY

- undefined terms, *p. 2* point, line, plane
- defined terms, p. 3
- line segment, endpoints, p. 3
- ray, opposite rays, p. 3
- postulate, axiom, p. 9
- congruent segments, p. 11
- midpoint*, p. 15*
- segment bisector, p. 15
- acute, right, obtuse, straight angles, *p. 25*
- congruent angles, p. 26
- angle bisector, p. 28
- linear pair, p. 37
- vertical angles, p. 37
- polygon, p. 42
- convex, concave, p. 42
- n-gon, p. 43
- equilateral, equiangular, regular, p. 43

Geometric figures can be used to represent real-world situations. For example, you can show a climber's position along a stretched rope by a point on a line segment.

Why?

Animated Geometry

The animation illustrated below for Exercise 35 on page 14 helps you answer this question: How far must a climber descend to reach the bottom of a cliff?

Animated Geometry at classzone.com

Other animations for Chapter 1: pages 3, 21, 25, 43, and 52

1.1 Identify Points, Lines, and Planes

Before	You studied basic concepts of geometry.
Now	You will name and sketch geometric figures.
Why	So you can use geometry terms in the real world, as in Ex. 13.

Key Vocabulary

- undefined terms point, line, plane
- collinear points
- coplanar points
- defined terms
- line segment
- endpoints
- ray
- opposite rays
- intersection

TAKE NOTES

When you write new concepts and yellowhighlighted vocabulary in your notebook, be sure to copy all associated diagrams. In the diagram of a football field, the positions of players are represented by *points*. The yard lines suggest *lines*, and the flat surface of the playing field can be thought of as a *plane*.

In geometry, the words *point, line,* and *plane* are **undefined terms**. These words do not have formal definitions, but there is agreement about what they mean.

KEY CONCEPT	For Your Notebook	
Undefined Terms	Δ	
Point A point has no dimension. It is represented by a dot.	point A	
Line A line has one dimension. It is represented by a line with two arrowheads, but it extends without end.	l A B	
Through any two points, there is exactly one line. You can use any two points on a line to name it.	line ℓ , line AB (\overleftrightarrow{AB}), or line BA (\overleftrightarrow{BA})	
Plane A plane has two dimensions. It is represented by a shape that looks like a floor or a wall, but it extends without end.	A M	
Through any three points not on the same line, there is exactly one plane. You can use three points that are not all on the same line to name a plane.	plane <i>M</i> or plane <i>ABC</i>	

Collinear points are points that lie on the same line. Coplanar points are points that lie in the same plane.

EXAMPLE 1

Name points, lines, and planes

- **VISUAL REASONING** There is a line through points *S* and *Q* that is not shown in the diagram. Try to imagine what plane *SPQ* would look like if it were shown.
- **a.** Give two other names for \overrightarrow{PQ} and for plane *R*.
- **b.** Name three points that are collinear. Name four points that are coplanar.

Solution

- **a.** Other names for \overrightarrow{PQ} are \overrightarrow{QP} and line *n*. Other names for plane *R* are plane *SVT* and plane *PTV*.
- **b.** Points *S*, *P*, and *T* lie on the same line, so they are collinear. Points *S*, *P*, *T*, and *V* lie in the same plane, so they are coplanar.

Animated Geometry at classzone.com

- **GUIDED PRACTICE** for Example 1
 - 1. Use the diagram in Example 1. Give two other names for \overrightarrow{ST} . Name a point that is *not* coplanar with points *Q*, *S*, and *T*.

DEFINED TERMS In geometry, terms that can be described using known words such as *point* or *line* are called **defined terms**.

KEY CONCEPT	For Your Notebook	
Defined Terms: Segments and Rays Line <i>AB</i> (written as \overrightarrow{AB}) and points <i>A</i> and <i>B</i> are used here to define the terms below.	$\xrightarrow{\text{line}} A \xrightarrow{\bullet} B$	
Segment The line segment <i>AB</i> , or segment <i>AB</i> , (written as \overline{AB}) consists of the endpoints <i>A</i> and <i>B</i> and all points on \overrightarrow{AB} that are between <i>A</i> and <i>B</i> . Note that \overline{AB} can also be named \overline{BA} .	segment endpoint endpoint A B	
Ray The ray <i>AB</i> (written as \overrightarrow{AB}) consists of the endpoint <i>A</i> and all points on \overrightarrow{AB} that lie on the same side of <i>A</i> as <i>B</i> . Note that \overrightarrow{AB} and \overrightarrow{BA} are different rays.	ray endpoint A B endpoint A B	

If point *C* lies on \overrightarrow{AB} between *A* and *B*, then \overrightarrow{CA} and \overrightarrow{CB} are **opposite rays**.

A C B

Segments and rays are collinear if they lie on the same line. So, opposite rays are collinear. Lines, segments, and rays are coplanar if they lie in the same plane.

EXAMPLE 2 Name segments, rays, and opposite rays

- **a.** Give another name for \overline{GH} .
- **b.** Name all rays with endpoint *J*. Which of these rays are opposite rays?

AVOID ERRORS

In Example 2, $J\vec{G}$ and $J\vec{F}$ have a common endpoint, but are not collinear. So they are *not* opposite rays.

- Solution
- **a.** Another name for \overline{GH} is \overline{HG} .
- **b.** The rays with endpoint *J* are \overrightarrow{JE} , \overrightarrow{JG} , \overrightarrow{JF} , and \overrightarrow{JH} . The pairs of opposite rays with endpoint *J* are \overrightarrow{JE} and \overrightarrow{JF} , and \overrightarrow{JG} and \overrightarrow{JH} .

GUIDED PRACTICE for Example 2

Use the diagram in Example 2.

- **2.** Give another name for \overline{EF} .
- **3.** Are \overrightarrow{HJ} and \overrightarrow{JH} the same ray? Are \overrightarrow{HJ} and \overrightarrow{HG} the same ray? *Explain*.

INTERSECTIONS Two or more geometric figures *intersect* if they have one or more points in common. The **intersection** of the figures is the set of points the figures have in common. Some examples of intersections are shown below.

The intersection of two different lines is a point.

The intersection of two different planes is a line.

EXAMPLE 3 Sketch intersections of lines and planes

- **a.** Sketch a plane and a line that is in the plane.
- **b.** Sketch a plane and a line that does not intersect the plane.
- c. Sketch a plane and a line that intersects the plane at a point.

Solution

EXAMPREE 4 Sketch intersections of planes

Sketch two planes that intersect in a line.

Solution

- *STEP 1* **Draw** a vertical plane. Shade the plane.
- *STEP 2* **Draw** a second plane that is horizontal. Shade this plane a different color. Use dashed lines to show where one plane is hidden.
- **STEP 3 Draw** the line of intersection.

\checkmark

GUIDED PRACTICE for Examples 3 and 4

4. Sketch two different lines that intersect a plane at the same point.

Use the diagram at the right.

- **5.** Name the intersection of \overrightarrow{PQ} and line *k*.
- 6. Name the intersection of plane *A* and plane *B*.
- **7.** Name the intersection of line *k* and plane *A*.

1.1 EXERCISES

HOMEWORK KEY

SKILL PRACTICE

EXAMPLE 1 on p. 3

for Exs. 3–7

- **1. VOCABULARY** Write in words what each of the following symbols means.
 - **a.** Q **b.** \overline{MN} **c.** \overrightarrow{ST} **d.** \overrightarrow{FG}
- 2. ★ WRITING *Compare* collinear points and coplanar points. Are collinear points also coplanar? Are coplanar points also collinear? *Explain*.

NAMING POINTS, LINES, AND PLANES In Exercises 3–7, use the diagram.

- **3.** Give two other names for \overrightarrow{WQ} .
- 4. Give another name for plane *V*.
- **5.** Name three points that are collinear. Then name a fourth point that is *not* collinear with these three points.
- 6. Name a point that is *not* coplanar with *R*, *S*, and *T*.
- 7. \star WRITING Is point *W* coplanar with points *Q* and *R*? *Explain*.

Q

S

26. SKETCHING Draw two points *P* and *Q*. Then sketch \overrightarrow{PQ} . Add a point *R* on the ray so that *Q* is between *P* and *R*.

W ALGEBRA In Exercises 27–32, you are given an equation of a line and a point. Use substitution to determine whether the point is on the line.

27. $y = x - 4$; $A(5, 1)$	28. $y = x + 1; A(1, 0)$	29. $y = 3x + 4$; $A(7, 1)$
30. $y = 4x + 2$; $A(1, 6)$	31. $y = 3x - 2$; $A(-1, -5)$	32. $y = -2x + 8; A(-4, 0)$

GRAPHING Graph the inequality on a number line. Tell whether the graph is a *segment*, a *ray* or *rays*, a *point*, or a *line*.

33. $x \le 3$	34. $x \ge -4$	35. $-7 \le x \le 4$
36. $x \ge 5$ or $x \le -2$	37. $x \ge -1$ or $x \le 5$	38. $ x \le 0$

- **39. CHALLENGE** Tell whether each of the following situations involving three planes is possible. If a situation is possible, make a sketch.
 - **a.** None of the three planes intersect.
 - **b.** The three planes intersect in one line.
 - **c.** The three planes intersect in one point.
 - **d.** Two planes do not intersect. The third plane intersects the other two.
 - **e.** Exactly two planes intersect. The third plane does not intersect the other two.

PROBLEM SOLVING

REVIEW

ALGEBRA

For help with equations of lines, see p. 878.

EVERYDAY INTERSECTIONS What kind of geometric intersection does the photograph suggest?

43. ★ SHORT RESPONSE *Explain* why a four-legged table may rock from side to side even if the floor is level. Would a three-legged table on the same level floor rock from side to side? Why or why not?

@HomeTutor for problem solving help at classzone.com

- **44. SURVEYING** A surveying instrument is placed on a tripod. The tripod has three legs whose lengths can be adjusted.
 - **a.** When the tripod is sitting on a level surface, are the tips of the legs coplanar?
 - **b.** Suppose the tripod is used on a sloping surface. The length of each leg is adjusted so that the base of the surveying instrument is level with the horizon. Are the tips of the legs coplanar? *Explain*.

@HomeTutor for problem solving help at classzone.com

Prepare for Lesson 1.2 in Exs. 53–58.

56. *A*(2, 4)

Plot the point in a coordinate plane. (p. 878)

57. B(-3, 6)

58. *E*(6, 7.5)

1.2 Use Segments and Congruence

Before	You learned about points, lines, and planes.
Now	You will use segment postulates to identify congruent segments.
Why?	So you can calculate flight distances, as in Ex. 33.

Key Vocabulary

- postulate, axiom
- coordinate
- distance
- between
- congruent segments

In Geometry, a rule that is accepted without proof is called a **postulate** or **axiom**. A rule that can be proved is called a *theorem*, as you will see later. Postulate 1 shows how to find the distance between two points on a line.

POSTULATE

POSTULATE 1 Ruler Postulate

The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the **coordinate** of the point.

The **distance** between points *A* and *B*, written as AB, is the absolute value of the difference of the coordinates of *A* and *B*.

In the diagrams above, the small numbers in the coordinates x_1 and x_2 are called subscripts. The coordinates are read as "x sub one" and "x sub two."

The distance between points A and B, or AB, is also called the *length* of AB.

EXAMPLE 1 **Apply the Ruler Postulate**

Measure the length of \overline{ST} to the nearest tenth of a centimeter.

Solution

Align one mark of a metric ruler with S. Then estimate the coordinate of T. For example, if you align *S* with 2, *T* appears to align with 5.4.

The length of \overline{ST} is about 3.4 centimeters.

ADDING SEGMENT LENGTHS When three points are collinear, you can say that one point is **between** the other two.

Point *B* is between points *A* and *C*.

Point E is not between points D and F.

EXAMPLE 2 Apply the Segment Addition Postulate

MAPS The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Lubbock, Texas, to St. Louis, Missouri.

Solution

Because Tulsa, Oklahoma, lies between Lubbock and St. Louis, you can apply the Segment Addition Postulate.

LS = LT + TS = 380 + 360 = 740

The distance from Lubbock to St. Louis is about 740 miles.

GUIDED PRACTICE for Examples 1 and 2

Use a ruler to measure the length of the segment to the nearest $\frac{1}{9}$ inch.

1. M

In Exercises 3 and 4, use the diagram shown.

- **3.** Use the Segment Addition Postulate to find *XZ*.
- 4. In the diagram, *WY* = 30. Can you use the Segment Addition Postulate to find the distance between points *W* and *Z*? *Explain* your reasoning.

EXAMPLE 3 Find a length

Use the diagram to find GH.

Solution

Use the Segment Addition Postulate to write an equation. Then solve the equation to find *GH*.

FH = FG + GH	Segment Addition Postulate
36 = 21 + GH	Substitute 36 for FH and 21 for FG
15 = GH	Subtract 21 from each side.

CONGRUENT SEGMENTS Line segments that have the same length are called **congruent segments**. In the diagram below, you can say "the length of *AB* is equal to the length of \overline{CD} ," or you can say " \overline{AB} is congruent to \overline{CD} ." The symbol \cong means "is congruent to."

EXAMPLE 4 **Compare segments for congruence**

Plot *J*(−3, 4), *K*(2, 4), *L*(1, 3), and *M*(1, −2) in a coordinate plane. Then determine whether \overline{JK} and \overline{LM} are congruent.

Solution

To find the length of a horizontal segment, find the absolute value of the difference of the *x*-coordinates of the endpoints.

$$JK = |2 - (-3)| = 5$$
 Use Ruler Postulate.

the *y*-coordinates of the endpoints.

To find the length of a vertical segment, find the absolute value of the difference of

$$LM = |-2 - 3| = 5$$
 Use Ruler Postulate.

▶ \overline{JK} and \overline{LM} have the same length. So, $\overline{JK} \cong \overline{LM}$.

GUIDED PRACTICE for Examples 3 and 4

- 5. Use the diagram at the right to find *WX*.
- 6. Plot the points A(-2, 4), B(3, 4), C(0, 2), and D(0, -2) in a coordinate plane. Then determine whether \overline{AB} and \overline{CD} are congruent.

REVIEW USING A COORDINATE PLANE For help with using a coordinate plane, see p. 878.

READ DIAGRAMS

 $\overline{AB} \cong \overline{CD}.$

1.2 EXERCISES

HOMEWORK

KEY

PROBLEM SOLVING

32. SCIENCE The photograph shows an insect called a walkingstick. Use the ruler to estimate the length of the abdomen and the length of the thorax to

the nearest $\frac{1}{4}$ inch. About how much longer is the

walkingstick's abdomen than its thorax?

@HomeTutor for problem solving help at classzone.com

example 2 on p. 10 for Ex. 33

33. MODEL AIRPLANE In 2003, a remote-controlled model airplane became the first ever to fly nonstop across the Atlantic Ocean. The map shows the airplane's position at three different points during its flight.

- a. Find the total distance the model airplane flew.
- **b.** The model airplane's flight lasted nearly 38 hours. Estimate the airplane's average speed in miles per hour.

```
@HomeTutor for problem solving help at classzone.com
```

- 34. ★ SHORT RESPONSE The bar graph shows the win-loss record for a lacrosse team over a period of three years.
 - **a.** Use the scale to find the length of the yellow bar for each year. What does the length represent?
 - **b.** For each year, find the percent of games lost by the team.
 - **c.** *Explain* how you are applying the Segment Addition Postulate when you find information from a stacked bar graph like the one shown.

- **35. MULTI-STEP PROBLEM** A climber uses a rope to descend a vertical cliff. Let *A* represent the point where the rope is secured at the top of the cliff, let *B* represent the climber's position, and let *C* represent the point where the rope is secured at the bottom of the cliff.
 - **a. Model** Draw and label a line segment that represents the situation.
 - **b. Calculate** If *AC* is 52 feet and *AB* is 31 feet, how much farther must the climber descend to reach the bottom of the cliff?

Animated Geometry at classzone.com

36. CHALLENGE Four cities lie along a straight highway in this order: City A, City B, City C, and City D. The distance from City A to City B is 5 times the distance from City B to City C. The distance from City A to City D is 2 times the distance from City A to City B. Copy and complete the mileage chart.

	City A	City B	City C	City D
City A		?	?	?
City B	?		?	?
City C	?	?		10 mi
City D	?	?	?	

MIXED REVIEW

1.3 Use Midpoint and Distance Formulas

Before Now Why?

You found lengths of segments.

You will find lengths of segments in the coordinate plane. So you can find an unknown length, as in Example 1.

Key Vocabulary

- midpoint
- segment bisector

MIDPOINTS AND BISECTORS The **midpoint** of a segment is the point that divides the segment into two congruent segments. A segment bisector is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector bisects a segment.

 \overrightarrow{CD} is a segment bisector of \overrightarrow{AB} . So, $\overline{AM} \cong \overline{MB}$ and AM = MB.

EXAMPLE 2 Use algebra with segment lengths

READ DIRECTIONS

Always read direction lines carefully. Notice that this direction line has two parts.

In Exercises 1 and 2, identify the segment bisector of \overline{PQ} . Then find PQ.

COORDINATE PLANE You can use the coordinates of the endpoints of a segment to find the coordinates of the midpoint.

EXAMPLE 3 Use the Midpoint Formula

- **a. FIND MIDPOINT** The endpoints of \overline{RS} are R(1, -3) and S(4, 2). Find the coordinates of the midpoint M.
- **b. FIND ENDPOINT** The midpoint of \overline{JK} is M(2, 1). One endpoint is *J*(1, 4). Find the coordinates of endpoint *K*.

Solution

a. FIND MIDPOINT Use the Midpoint Formula.

$$M\left(\frac{1+4}{2}, \frac{-3+2}{2}\right) = M\left(\frac{5}{2}, -\frac{1}{2}\right)$$

- ▶ The coordinates of the midpoint M are $(\frac{5}{2}, -\frac{1}{2})$.
- **b. FIND ENDPOINT** Let (x, y) be the coordinates of endpoint K. Use the Midpoint Formula.

▶ The coordinates of endpoint *K* are (3, -2).

GUIDED PRACTICE for Example 3

- **3.** The endpoints of \overline{AB} are A(1, 2) and B(7, 8). Find the coordinates of the midpoint M.
- 4. The midpoint of \overline{VW} is M(-1, -2). One endpoint is W(4, 4). Find the coordinates of endpoint V.

DISTANCE FORMULA The Distance Formula is a formula for computing the distance between two points in a coordinate plane.

READ DIAGRAMS

CLEAR FRACTIONS

Multiply each side of the equation by the

denominator to clear

the fraction.

The red mark at one corner of the triangle shown indicates a iright triangle.

The Distance Formula is based on the *Pythagorean Theorem*, which you will see again when you work with right triangles in Chapter 7.

GUIDED PRACTICEfor Example 45. In Example 4, does it matter which ordered pair you choose to substitute
for (x_1, y_1) and which ordered pair you choose to substitute for (x_2, y_2) ?
*Explain.*6. What is the approximate length of \overline{AB} , with endpoints A(-3, 2) and
B(1, -4)?

(A) 6.1 units (B) 7.2 units (C) 8.5 units (D) 10.0 units

1.3 EXERCISES

HOMEWORK

 = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 15, 35, and 49
 = STANDARDIZED TEST PRACTICE Exs. 2, 23, 34, 41, 42, and 53

Skill Practice

23. ★ WRITING Develop a formula for finding the midpoint of a segment with endpoints A(0, 0) and B(m, n). *Explain* your thinking.

24. ERROR ANALYSIS *Describe* the error made in finding the coordinates of the midpoint of a segment with endpoints S(8, 3) and T(2, -1).

FINDING ENDPOINTS Use the given endpoint *R* and midpoint *M* of \overline{RS} to find the coordinates of the other endpoint *S*.

DISTANCE FORMULA Find the length of the segment. Round to the nearest

25. <i>R</i> (3, 0), <i>M</i> (0, 5)	26. <i>R</i> (5, 1), <i>M</i> (1, 4)	27. <i>R</i> (6, -2), <i>M</i> (5, 3)
28. <i>R</i> (-7, 11), <i>M</i> (2, 1)	29. <i>R</i> (4, -6), <i>M</i> (-7, 8)	30. <i>R</i> (-4, -6), <i>M</i> (3, -4)

EXAMPLE 4 on p. 18 for Exs. 31–34

= WORKED-OUT SOLUTIONS on p. WS1 **★** = STANDARDIZED TEST PRACTICE

PROBLEM SOLVING

EXAMPLE 1 on p. 15 for Ex. 48 **48. WINDMILL** In the photograph of a windmill, \overline{ST} bisects \overline{QR} at point *M*. The length of \overline{QM} is $18\frac{1}{2}$ feet. Find *QR* and *MR*.

@HomeTutor for problem solving help at classzone.com

(49.) **DISTANCES** A house and a school are 5.7 kilometers apart on the same straight road. The library is on the same road, halfway between the house and the school. Draw a sketch to represent this situation. Mark the locations of the house, school, and library. How far is the library from the house?

@HomeTutor for problem solving help at classzone.com

ARCHAEOLOGY The points on the diagram show the positions of objects at an underwater archaeological site. Use the diagram for Exercises 50 and 51.

51. Which two objects are closest to each other? Which two are farthest apart?

Animated Geometry at classzone.com

52. WATER POLO The diagram shows the positions of three players during part of a water polo match. Player *A* throws the ball to Player *B*, who then throws it to Player *C*. How far did Player *A* throw the ball? How far did Player *B* throw the ball? How far would Player *A* have thrown the ball if he had thrown it directly to Player *C*? Round all answers to the nearest tenth of a meter.

- **53. ★ EXTENDED RESPONSE** As shown, a path goes around a triangular park.
 - **a.** Find the distance around the park to the nearest yard.
 - **b.** A new path and a bridge are constructed from point Q to the midpoint M of \overline{PR} . Find QM to the nearest yard.
 - **c.** A man jogs from *P* to *Q* to *M* to *R* to *Q* and back to *P* at an average speed of 150 yards per minute. About how many minutes does it take? *Explain*.

54. CHALLENGE \overline{AB} bisects \overline{CD} at point M, \overline{CD} bisects \overline{AB} at point M, and $AB = 4 \cdot CM$. *Describe* the relationship between AM and CD.

MIXED REVIEW

The graph shows data about the number of children in the families of students in a math class. (p. 888)

- **55.** What percent of the students in the class belong to families with two or more children?
- **56.** If there are 25 students in the class, how many students belong to families with two children?

59. 5x - 22 - 7x + 2 = 40

PREVIEW

Prepare for Lesson 1.4 in Exs. 57–59.

Solve the equation. (p. 875)

57. 3x + 12 + x = 20 **58.** 9x + 2x + 6 - x = 10

In Exercises 60–64, use the diagram at the right. (p. 2)

- **60.** Name all rays with endpoint *B*.
- **61.** Name all the rays that contain point *C*.
- **62.** Name a pair of opposite rays.
- **63.** Name the intersection of \overrightarrow{AB} and \overrightarrow{BC} .
- **64.** Name the intersection of \overrightarrow{BC} and plane *P*.

QUIZ for Lessons 1.1–1.3

 Sketch two lines that intersect the same plane at two different points. The lines intersect each other at a point not in the plane. (p. 2)

In the diagram of collinear points, AE = 26, AD = 15, and AB = BC = CD. Find the indicated length. (p. 9) 2. DE 3. AB 4. AC

5. BD	6 CF	7 R

8. The endpoints of \overline{RS} are R(-2, -1) and S(2, 3). Find the coordinates of the midpoint of \overline{RS} . Then find the distance between *R* and *S*. (*p.* 15)

0

MIXED REVIEW of Problem Solving

STATE TEST PRACTICE classzone.com

Lessons 1.1–1.3

1. **MULTI-STEP PROBLEM** The diagram shows existing roads $(\overrightarrow{BD} \text{ and } \overrightarrow{DE})$ and a new road (\overrightarrow{CE}) under construction.

- **a.** If you drive from point *B* to point *E* on existing roads, how far do you travel?
- **b.** If you use the new road as you drive from *B* to *E*, about how far do you travel? Round to the nearest tenth of a mile if necessary.
- **c.** About how much shorter is the trip from *B* to *E* if you use the new road?
- **2. GRIDDED ANSWER** Point *M* is the midpoint of \overline{PQ} . If PM = 23x + 5 and MQ = 25x 4, find the length of \overline{PQ} .
- **3. GRIDDED ANSWER** You are hiking on a trail that lies along a straight railroad track. The total length of the trail is 5.4 kilometers. You have been hiking for 45 minutes at an average speed of 2.4 kilometers per hour. How much farther (in kilometers) do you need to hike to reach the end of the trail?
- 4. **SHORT RESPONSE** The diagram below shows the frame for a wall. \overline{FH} represents a vertical board, and \overline{EG} represents a brace. If FG = 143 cm, does the brace bisect \overline{FH} ? If not, how long should \overline{FG} be so that the brace does bisect \overline{FH} ? *Explain*.

- **5. SHORT RESPONSE** Point *E* is the midpoint of \overline{AB} and the midpoint of \overline{CD} . The endpoints of \overline{AB} are A(-4, 5) and B(6, -5). The coordinates of point *C* are (2, 8). Find the coordinates of point *D*. *Explain* how you got your answer.
- 6. **OPEN-ENDED** The distance around a figure is its *perimeter*. Choose four points in a coordinate plane that can be connected to form a rectangle with a perimeter of 16 units. Then choose four other points and draw a different rectangle that has a perimeter of 16 units. Show how you determined that each rectangle has a perimeter of 16 units.
- **7. SHORT RESPONSE** Use the diagram of a box. What are all the names that can be used to describe the plane that contains points *B*, *F*, and *C*? Name the intersection of planes *ABC* and *BFE*. *Explain*.

8. EXTENDED RESPONSE Jill is a salesperson who needs to visit towns A, B, and C. On the map below, AB = 18.7 km and BC = 2AB. Assume Jill travels along the road shown.

- **a.** Find the distance Jill travels if she starts at Town *A*, visits Towns *B* and *C*, and then returns to Town *A*.
- **b.** About how much time does Jill spend driving if her average driving speed is 70 kilometers per hour?
- **c.** Jill needs to spend 2.5 hours in each town. Can she visit all three towns and return to Town *A* in an 8 hour workday? *Explain*.

1.4 Measure and Classify Angles

Before You named and measured line segments.		
Now	You will name, measure, and classify angles.	
Why?	So you can identify congruent angles, as in Example 4.	

An **angle** consists of two different rays with the same

The angle with sides \overrightarrow{AB} and \overrightarrow{AC} can be named $\angle BAC$.

endpoint. The rays are the **sides** of the angle. The

 $\angle CAB$, or $\angle A$. Point A is the vertex of the angle.

Key Vocabulary

- angle acute, right, obtuse, straight
- sides, vertex of an angle
- measure of an angle
- congruent angles
- angle bisector

EXAMPLE 1 Name angles

endpoint is the **vertex** of the angle.

Name the three angles in the diagram.

- $\angle WXY$, or $\angle YXW$
- $\angle YXZ$, or $\angle ZXY$
- $\angle WXZ$, or $\angle ZXW$

You should not name any of these angles $\angle X$ because all three angles have *X* as their vertex.

MEASURING ANGLES A protractor can be used to approximate the *measure* of an angle. An angle is measured in units called *degrees* (°). For instance, the measure of $\angle WXZ$ in Example 1 above is 32°. You can write this statement in two ways.

Words The measure of $\angle WXZ$ is 32°.

Symbols $m \angle WXZ = 32^{\circ}$

CLASSIFYING ANGLES Angles can be classified as <mark>acute</mark>, right, obtuse, and straight, as shown below.

READ DIAGRAMS

- A red square inside an
- angle indicates that the
- angle is a right angle.

EXAMPLE 2 Measure and classify angles

Use the diagram to find the measure of the indicated angle. Then classify the angle.

a. $\angle KHJ$ **b.** $\angle GHK$ **c.** $\angle GHJ$ **d.** $\angle GHL$

Solution

A protractor has an inner and an outer scale. When you measure an angle, check to see which scale to use.

- **a.** \overrightarrow{HJ} is lined up with the 0° on the inner scale of the protractor. \overrightarrow{HK} passes through 55° on the inner scale. So, $m \angle KHJ = 55^\circ$. It is an acute angle.
- **b.** \overrightarrow{HG} is lined up with the 0° on the outer scale, and \overrightarrow{HK} passes through 125° on the outer scale. So, $m \angle GHK = 125^\circ$. It is an obtuse angle.
- **c.** $m \angle GHJ = 180^{\circ}$. It is a straight angle.
- **d.** $m \angle GHL = 90^\circ$. It is a right angle.

Animated Geometry at classzone.com

GUIDED PRACTICE for Examples 1 and 2

- 1. Name all the angles in the diagram at the right. Which angle is a right angle?
- **2.** Draw a pair of opposite rays. What type of angle do the rays form?

READ DIAGRAMS

A point is in the *interior* of an angle if it is between points that lie on each side of the angle.

POSTULATE

POSTULATE 4 Angle Addition Postulate

Words If *P* is in the interior of $\angle RST$, then the measure of $\angle RST$ is equal to the sum of the measures of $\angle RSP$ and $\angle PST$.

Symbols If *P* is in the interior of $\angle RST$, then $m \angle RST = m \angle RSP + m \angle PST$.

EXAMPLE 3 Find angle measures

W ALGEBRA Given that $m \angle LKN = 145^\circ$, find $m \angle LKM$ and $m \angle MKN$.

Solution

STEP 1 Write and solve an equation to find the value of *x*.

 $m \angle LKN = m \angle LKM + m \angle MKN$ **Angle Addition Postulate** $145^{\circ} = (2x + 10)^{\circ} + (4x - 3)^{\circ}$ Substitute angle measures. 145 = 6x + 7138 = 6x23 = x

Combine like terms. Subtract 7 from each side. Divide each side by 6.

STEP 2 Evaluate the given expressions when x = 23.

$$m \angle LKM = (2x + 10)^{\circ} = (2 \cdot 23 + 10)^{\circ} = 56^{\circ}$$

$$m \angle MKN = (4x - 3)^{\circ} = (4 \cdot 23 - 3)^{\circ} = 89^{\circ}$$

So, $m \angle LKM = 56^{\circ}$ and $m \angle MKN = 89^{\circ}$.

GUIDED PRACTICE for Example 3

Find the indicated angle measures.

3. Given that $\angle KLM$ is a straight angle, find $m \angle KLN$ and $m \angle NLM$.

CONGRUENT ANGLES Two angles are **congruent angles** if they have the same measure. In the diagram below, you can say that "the measure of angle A is equal to the measure of angle *B*," or you can say "angle *A* is congruent to angle B."

EXAMPLE 4 Identify congruent angles

TRAPEZE The photograph shows some of the angles formed by the ropes in a trapeze apparatus. Identify the congruent angles. If $m \angle DEG = 157^\circ$, what is $m \angle GKL$?

Solution

There are two pairs of congruent angles:

 $\angle DEF \cong \angle JKL$ and $\angle DEG \cong \angle GKL$.

Because $\angle DEG \cong \angle GKL$, $m \angle DEG = m \angle GKL$. So, $m \angle GKL = 157^{\circ}$.

GUIDED PRACTICE for Example 4

Use the diagram shown at the right.

- **5.** Identify all pairs of congruent angles in the diagram.
- **6.** In the diagram, $m \angle PQR = 130^\circ$, $m \angle QRS = 84^\circ$, and $m \angle TSR = 121^\circ$. Find the other angle measures in the diagram.

An **angle bisector** is a ray that divides an angle into two angles that are congruent. In the activity on page 27, \overrightarrow{BD} bisects $\angle ABC$. So, $\angle ABD \cong \angle DBC$ and $m \angle ABD = m \angle DBC$.

EXAMPLE 5 Double an angle measure

In the diagram at the right, \overrightarrow{YW} bisects $\angle XYZ$, and $m\angle XYW = 18^\circ$. Find $m\angle XYZ$.

Solution

By the Angle Addition Postulate, $m \angle XYZ = m \angle XYW + m \angle WYZ$. Because \overrightarrow{YW} bisects $\angle XYZ$, you know that $\angle XYW \cong \angle WYZ$.

So, $m \angle XYW = m \angle WYZ$, and you can write

 $m \angle XYZ = m \angle XYW + m \angle WYZ = 18^{\circ} + 18^{\circ} = 36^{\circ}.$

GUIDED PRACTICE for Example 5

7. Angle *MNP* is a straight angle, and \overrightarrow{NQ} bisects $\angle MNP$. Draw $\angle MNP$ and \overrightarrow{NQ} . Use arcs to mark the congruent angles in your diagram, and give the angle measures of these congruent angles.

1.4 EXERCISES

 = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 15, 23, and 53
 = STANDARDIZED TEST PRACTICE Exs. 2, 21, 27, 43, and 62

28. CONGRUENT ANGLES In the photograph below, $m \angle AED = 34^{\circ}$ and $m \angle EAD = 112^{\circ}$. Identify the congruent angles in the diagram. Then find $m \angle BDC$ and $m \angle ADB$.

ANGLE BISECTORS Given that \overrightarrow{WZ} bisects $\angle XWY$, find the two angle

EXAMPLE 5 on p. 28 for Exs. 29–32

= WORKED-OUT SOLUTIONS on p. WS1

- **48. W** ALGEBRA Let $(2x 12)^\circ$ represent the measure of an acute angle. What are the possible values of *x*?
- **49. CHALLENGE** \overrightarrow{SQ} bisects $\angle RST$, \overrightarrow{SP} bisects $\angle RSQ$, and \overrightarrow{SV} bisects $\angle RSP$. The measure of $\angle VSP$ is 17°. Find $m \angle TSQ$. Explain.
 - **50. FINDING MEASURES** In the diagram, $m \angle AEB = \frac{1}{2} \cdot m \angle CED$, and $\angle AED$ is a straight angle. Find $m \angle AEB$ and $m \angle CED$.

PROBLEM SOLVING

51. SCULPTURE In the sculpture shown in the photograph, suppose the measure of $\angle LMN$ is 79° and the measure of $\angle PMN$ is 47°. What is the measure of $\angle LMP$?

@HomeTutor for problem solving help at classzone.com

52. MAP The map shows the intersection of three roads. Malcom Way intersects Sydney Street at an angle of 162°. Park Road intersects Sydney Street at an angle of 87°. Find the angle at which Malcom Way intersects Park Road.

@HomeTutor for problem solving help at classzone.com

CONSTRUCTION In Exercises 53–55, use the photograph of a roof truss.

53. In the roof truss, \overrightarrow{BG} bisects $\angle ABC$ and $\angle DEF$, $m \angle ABC = 112^\circ$, and $\angle ABC \cong \angle DEF$. Find the measure of the following angles.

- **a.** $m \angle DEF$ **b.** $m \angle ABG$
- **c.** $m \angle CBG$ **d.** $m \angle DEG$
- **54.** In the roof truss, \overrightarrow{GB} bisects $\angle DGF$. Find $m \angle DGE$ and $m \angle FGE$.
- **55.** Name an example of each of the following types of angles: *acute, obtuse, right,* and *straight.*

MIXED REVIEW

PREVIEW Prepare for Lesson 1.5 in Ex. 64. **64.** You and a friend go out to dinner and each pay for your own meal. The total cost of the two meals is \$25. Your meal cost \$4 more than your friend's meal. How much does each meal cost? (*p.* 894)

Graph the inequality on a number line. Tell whether the graph is a *segment*, a *ray* or *rays*, a *point*, or a *line*. (*p*. 2)

65. $x \le -8$	66. $x \ge 6$	67. $-3 \le x \le 5$
68. $x \ge -7$ and $x \le -1$	69. $x \ge -2$ or $x \le 4$	70. $ x \ge 0$

Find the coordinate of the midpoint of the segment. (p. 15)

Investigating CONSTRUCTION Use after Lesson 1.4

1.4 Copy and Bisect Segments and Angles

MATERIALS • compass • straightedge

QUESTION How can you copy and bisect segments and angles?

A **construction** is a geometric drawing that uses a limited set of tools, usually a *compass* and *straightedge*. You can use a compass and straightedge (a ruler without marks) to construct a segment that is congruent to a given segment, and an angle that is congruent to a given angle.

EXPLORE 1 Copy a segment

Use the following steps to construct a segment that is congruent to \overline{AB} .

Draw a segment Use a straightedge to draw a segment longer than \overline{AB} . Label point *C* on the new segment.

Measure length Set your compass at the length of \overline{AB} .

Copy length Place the compass at *C*. Mark point *D* on the new segment. $\overline{CD} \cong \overline{AB}$.

EXPLORE 2 Bisect a segment

Use the following steps to construct a bisector of \overline{AB} and to find the midpoint M of \overline{AB} .

Draw an arc Place the compass at A. Use a compass setting that is greater than half the length of \overline{AB} . Draw an arc.

Draw a second arc Keep the same compass setting. Place the compass at *B*. Draw an arc. It should intersect the other arc at two points.

STEP 3

Bisect segment Draw a segment through the two points of intersection. This segment bisects \overline{AB} at M, the midpoint of \overline{AB} .

EXPLORE 3 Copy an angle

Use the following steps to construct an angle that is congruent to $\angle A$. In this construction, the *radius* of an arc is the distance from the point where the compass point rests (the center of the arc) to a point on the arc drawn by the compass.

Draw a segment Draw a segment. Label a point D on the segment.

Draw arcs Draw an arc with center A. Using the same radius, draw an arc with center D.

Label B, C, and E. Draw

an arc with radius BC

and center E. Label

the intersection F.

Draw arcs

'E

STEP 4

Draw a ray Draw DÉ. $\angle EDF \cong \angle BAC.$

EXPLORE 4) **Bisect an angle**

Use the following steps to construct an angle bisector of $\angle A$.

Draw an arc Place the compass at A. Draw an arc that intersects both sides of the angle. Label the intersections C and B.

Draw arcs Place the compass at C. Draw an arc. Then place the compass point at *B*. Using the same radius, draw another arc.

STEP 3

Draw a ray Label the intersection G. Use a straightedge to draw a ray through A and G. \overrightarrow{AG} bisects $\angle A$.

DRAW CONCLUSIONS Use your observations to complete these exercises

- 1. *Describe* how you could use a compass and a straightedge to draw a segment that is twice as long as a given segment.
- 2. Draw an obtuse angle. Copy the angle using a compass and a straightedge. Then bisect the angle using a compass and straightedge.

1.5 Describe Angle Pair Relationships

Now Why?

Before

You used angle postulates to measure and classify angles. You will use special angle relationships to find angle measures. So you can find measures in a building, as in Ex. 53.

Key Vocabulary

- complementary angles
- supplementary angles
- adjacent angles
- linear pair
- vertical angles

Two angles are **complementary angles** if the sum of their measures is 90°. Each angle is the *complement* of the other. Two angles are **supplementary angles** if the sum of their measures is 180°. Each angle is the *supplement* of the other.

Complementary angles and supplementary angles can be *adjacent angles* or *nonadjacent angles*. Adjacent angles are two angles that share a common vertex and side, but have no common interior points.

EXAMPLE 1 Identify complements and supplements

AVOID ERRORS

In Example 1, $\angle DAC$ and $\angle DAB$ share a common vertex. But they share common interior points, so they are *not* adjacent angles.

In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

Solution

Because $32^{\circ} + 58^{\circ} = 90^{\circ}$, $\angle BAC$ and $\angle RST$ are complementary angles.

Because $122^{\circ} + 58^{\circ} = 180^{\circ}$, $\angle CAD$ and $\angle RST$ are supplementary angles.

Because $\angle BAC$ and $\angle CAD$ share a common vertex and side, they are adjacent.

~	GUIDED PRACTICE	for Example 1	
	 In the figure, n angles, a pair o pair of adjacen 	ame a pair of complementary of supplementary angles, and a t angles.	F G H
	2. Are $\angle KGH$ and $\angle FGK$ and $\angle FG$	∠ <i>LKG</i> adjacent angles? Are GH adjacent angles? <i>Explain</i> .	K L

EXAMPLE 2 Find measures of a complement and a supplement

READ DIAGRAMS

Angles are sometimes named with numbers. An angle measure in a diagram has a degree symbol. An angle name does not. **a.** Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1 = 68^\circ$, find $m \angle 2$.

b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 4 = 56^\circ$, find $m \angle 3$.

Solution

EXAMPLE 3

a. You can draw a diagram with complementary adjacent angles to illustrate the relationship.

 $m \angle 2 = 90^{\circ} - m \angle 1 = 90^{\circ} - 68^{\circ} = 22^{\circ}$

b. You can draw a diagram with supplementary adjacent angles to illustrate the relationship.

Find angle measures

$$m \angle 3 = 180^{\circ} - m \angle 4 = 180^{\circ} - 56^{\circ} = 124$$

READ DIAGRAMS In a diagram, you can assume that a line that looks straight *is* straight. In Example 3, *B*, *C*, and *D* lie on \overrightarrow{BD} . So, $\angle BCD$ is a straight angle. **SPORTS** When viewed from the side, the frame of a ball-return net forms a pair of supplementary angles with the ground. Find $m \angle BCE$ and $m \angle ECD$.

$$(4x + 8)^{\circ}$$

Solution

STEP 1 Use the fact that the sum of the measures of supplementary angles is 180°.

$m \angle BCE + m \angle ECD = 180^{\circ}$	Write equation.
$(4x + 8)^{\circ} + (x + 2)^{\circ} = 180^{\circ}$	Substitute.
5x + 10 = 180	Combine like terms.
5x = 170	Subtract 10 from each side
x = 34	Divide each side by 5.

STEP 2 **Evaluate** the original expressions when x = 34.

$$m \angle BCE = (4x + 8)^{\circ} = (4 \cdot 34 + 8)^{\circ} = 144^{\circ}$$

$$m \angle ECD = (x + 2)^{\circ} = (34 + 2)^{\circ} = 36^{\circ}$$

▶ The angle measures are 144° and 36°.

GUIDED PRACTICE for Examples 2 and 3

- **3.** Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 2 = 8^\circ$, find $m \angle 1$.
- **4.** Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3 = 117^{\circ}$, find $m \angle 4$.
- **5.** $\angle LMN$ and $\angle PQR$ are complementary angles. Find the measures of the angles if $m \angle LMN = (4x 2)^{\circ}$ and $m \angle PQR = (9x + 1)^{\circ}$.

ANGLE PAIRS Two adjacent angles are a **linear pair** if their noncommon sides are opposite rays. The angles in a linear pair are supplementary angles.

Two angles are **vertical angles** if their sides form two pairs of opposite rays.

 \angle 1 and \angle 2 are a linear pair.

 \angle 3 and \angle 6 are vertical angles. \angle 4 and \angle 5 are vertical angles.

EXAMPLE 4 Identify angle pairs

Identify all of the linear pairs and all of the vertical angles in the figure at the right.

Solution

To find vertical angles, look for angles formed by intersecting lines.

 $\blacktriangleright \angle 1$ and $\angle 5$ are vertical angles.

To find linear pairs, look for adjacent angles whose noncommon sides are opposite rays.

 \blacktriangleright $\angle 1$ and $\angle 4$ are a linear pair. $\angle 4$ and $\angle 5$ are also a linear pair.

EXAMPLE 5 Find angle measures in a linear pair

W ALGEBRA Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.

Solution

Let x° be the measure of one angle. The measure of the other angle is $5x^\circ$. Then use the fact that the angles of a linear pair are supplementary to write an equation.

 $x^{\circ} + 5x^{\circ} = 180^{\circ}$ Write an equation. 6x = 180 Combine like terms. x = 30 Divide each side by 6.

The measures of the angles are 30° and $5(30^{\circ}) = 150^{\circ}$.

GUIDED PRACTICE for Examples 4 and 5

- **6.** Do any of the numbered angles in the diagram at the right form a linear pair? Which angles are vertical angles? *Explain*.
- **7.** The measure of an angle is twice the measure of its complement. Find the measure of each angle.

DRAW DIAGRAMS

AVOID ERRORS

are not adjacent.

In the diagram, one side of $\angle 1$ and one side of $\angle 3$ are opposite rays.

But the angles are not a

linear pair because they

You may find it useful to draw a diagram to represent a word problem like the one in Example 5.

CONCEPT SUMMARY

Interpreting a Diagram

There are some things you can conclude from a diagram, and some you cannot. For example, here are some things that you *can* conclude from the diagram at the right:

- All points shown are coplanar.
- Points A, B, and C are collinear, and B is between A and C.
- \overrightarrow{AC} , \overrightarrow{BD} , and \overrightarrow{BE} intersect at point B.
- $\angle DBE$ and $\angle EBC$ are adjacent angles, and $\angle ABC$ is a straight angle.
- Point *E* lies in the interior of $\angle DBC$.

In the diagram above, you *cannot* conclude that $\overline{AB} \cong \overline{BC}$, that $\angle DBE \cong \angle EBC$, or that $\angle ABD$ is a right angle. This information must be indicated, as shown at the right.

For Your Notebook

SKILL PRACTICE

1.5 EXERCISES

- **1. VOCABULARY** Sketch an example of adjacent angles that are complementary. Are all complementary angles adjacent angles? *Explain*.
 - 2. ★ WRITING Are all linear pairs supplementary angles? Are all supplementary angles linear pairs? *Explain*.

EXAMPLE 1

on p. 35 for Exs. 3–7

IDENTIFYING ANGLES Name a pair of complementary angles and a pair of supplementary angles.

REASONING Tell whether the statement is *always*, *sometimes*, or *never* true. *Explain* your reasoning.

- **34.** An obtuse angle has a complement.
- **35.** A straight angle has a complement.
- **36.** An angle has a supplement.
- **37.** The complement of an acute angle is an acute angle.
- **38.** The supplement of an acute angle is an obtuse angle.

FINDING ANGLES $\angle A$ and $\angle B$ are complementary. Find $m \angle A$ and $m \angle B$.

39. $m \angle A = (3x + 2)^{\circ}$	40. $m \angle A = (15x + 3)^{\circ}$	41. $m \angle A = (11x + 24)^{\circ}$
$m \angle B = (x - 4)^{\circ}$	$m \angle B = (5x - 13)^{\circ}$	$m \angle B = (x + 18)^{\circ}$

FINDING ANGLES $\angle A$ and $\angle B$ are supplementary. Find $m \angle A$ and $m \angle B$.

42. $m \angle A = (8x + 100)^{\circ}$	43. $m \angle A = (2x - 20)^{\circ}$	44. $m \angle A = (6x + 72)^{\circ}$
$m \angle B = (2x + 50)^{\circ}$	$m \angle B = (3x + 5)^{\circ}$	$m \angle B = (2x + 28)^{\circ}$

45. CHALLENGE You are given that $\angle GHJ$ is a complement of $\angle RST$ and $\angle RST$ is a supplement of $\angle ABC$. Let $m \angle GHJ$ be x° . What is the measure of $\angle ABC$? *Explain* your reasoning.

PROBLEM SOLVING

54. SHADOWS The length of a shadow changes as the sun rises. In the diagram below, the length of \overline{CB} is the length of a shadow. The end of the shadow is the vertex of $\angle ABC$, which is formed by the ground and the sun's rays. *Describe* how the shadow and angle change as the sun rises.

- **55. WULTIPLE REPRESENTATIONS** Let x° be an angle measure. Let y_1° be the measure of a complement of the angle and let y_2° be the measure of a supplement of the angle.
 - **a.** Writing an Equation Write equations for y_1 as a function of x, and for y_2 as a function of x. What is the domain of each function? *Explain*.
 - b. Drawing a Graph Graph each function and *describe* its range.
- **56. CHALLENGE** The sum of the measures of two complementary angles exceeds the difference of their measures by 86°. Find the measure of each angle. *Explain* how you found the angle measures.

MIXED REVIEW

1.6 Classify Polygons

Before You classified angles. Now You will classify polygons. Why? So you can find lengths in a floor plan, as in Ex. 32.

Key Vocabulary

- polygon side, vertex
- convex
- concave
- *n*-gon
- equilateral
- equiangular
- regular

KEY CONCEPT

Identifying Polygons

In geometry, a figure that lies in a plane is called a *plane figure*. A **polygon** is a closed plane figure with the following properties.

- 1. It is formed by three or more line segments called sides.
- 2. Each side intersects exactly two sides, one at each endpoint, so that no two sides with a common endpoint are collinear.

Each endpoint of a side is a **vertex** of the polygon. The plural of vertex is *vertices*. A polygon can be named by listing the vertices in consecutive order.

For example, ABCDE and CDEAB are both correct

names for the polygon at the right.

A polygon is **convex** if no line that contains a side of the polygon contains a point in the interior of the polygon. A polygon that is not convex is called *nonconvex* or **concave**.

EXAMPLE 1 **Identify polygons**

READ VOCABULARY

A plane figure is twodimensional. Later, you will study threedimensional space *figures* such as prisms and cylinders.

Tell whether the figure is a polygon and whether it is convex or concave.

Solution

- a. Some segments intersect more than two segments, so it is not a polygon.
- **b.** The figure is a convex polygon.
- c. Part of the figure is not a segment, so it is not a polygon.
- d. The figure is a concave polygon.

For Your Notebook

CLASSIFYING POLYGONS A polygon is named by the number of its sides.

Number of sides	Type of polygon	Number of sides	Type of polygon
3	Triangle	8	Octagon
4	Quadrilateral	9	Nonagon
5	Pentagon	10	Decagon
6	Hexagon	12	Dodecagon
7	Heptagon	n	<i>n</i> -gon

The term *n***-gon**, where *n* is the number of a polygon's sides, can also be used to name a polygon. For example, a polygon with 14 sides is a 14-gon.

In an **equilateral** polygon, all sides are congruent. In an **equiangular** polygon, all angles in the interior of the polygon are congruent. A **regular** polygon is a convex polygon that is both equilateral and equiangular.

regular pentagon

EXAMPLE 2 **Classify polygons**

READ DIAGRAMS

Double marks are used in part (b) of Example 2 to show that more than one pair of sides are congruent and more than one pair of angles are congruent.

Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.

Solution

- a. The polygon has 6 sides. It is equilateral and equiangular, so it is a regular hexagon.
- **b.** The polygon has 4 sides, so it is a quadrilateral. It is not equilateral or equiangular, so it is not regular.
- c. The polygon has 12 sides, so it is a dodecagon. The sides are congruent, so it is equilateral. The polygon is not convex, so it is not regular.

Animated Geometry at classzone.com

GUIDED PRACTICE for Examples 1 and 2

- 1. Sketch an example of a convex heptagon and an example of a concave heptagon.
- 2. Classify the polygon shown at the right by the number of sides. *Explain* how you know that the sides of the polygon are congruent and that the angles of the polygon are congruent.

EXAMPLE 3 Find side lengths

READ VOCABULARY *Hexagonal* means "shaped like a hexagon." **ALGEBRA** A table is shaped like a regular hexagon. The expressions shown represent side lengths of the hexagonal table. Find the length of a side. (3x + 6) in.

Solution

First, write and solve an equation to find the value of *x*. Use the fact that the sides of a regular hexagon are congruent.

3x + 6 = 4x - 2 Write equation. 6 = x - 2 Subtract 3x from each side. 8 = x Add 2 to each side.

Then find a side length. Evaluate one of the expressions when x = 8.

3x + 6 = 3(8) + 6 = 30

▶ The length of a side of the table is 30 inches.

GUIDED PRACTICE for Example 3

3. The expressions $8y^{\circ}$ and $(9y - 15)^{\circ}$ represent the measures of two of the angles in the table in Example 3. Find the measure of an angle.

1.6 EXERCISES

 = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 13, 19, and 33
 = STANDARDIZED TEST PRACTICE Exs. 2, 7, 37, 39, and 40

(4x - 2) in.

SKILL PRACTICE

- **1. VOCABULARY** *Explain* what is meant by the term *n*-gon.
 - 2. ★ WRITING Imagine that you can tie a string tightly around a polygon. If the polygon is convex, will the length of the string be equal to the distance around the polygon? What if the polygon is concave? *Explain*.

EXAMPLE 1 on p. 42 for Exs. 3–7

CLASSIFYING Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. *Explain* your reasoning.

14. **ERROR ANALYSIS** Two students were asked to draw a regular hexagon, as shown below. *Describe* the error made by each student.

EXAMPLE 3 on p. 44 for Exs. 15–17

- **15. (2) ALGEBRA** The lengths (in inches) of two sides of a regular pentagon are represented by the expressions 5x 27 and 2x 6. Find the length of a side of the pentagon.
- **16. (2) ALGEBRA** The expressions $(9x + 5)^{\circ}$ and $(11x 25)^{\circ}$ represent the measures of two angles of a regular nonagon. Find the measure of an angle of the nonagon.
- 17. **W** ALGEBRA The expressions 3x 9 and 23 5x represent the lengths (in feet) of two sides of an equilateral triangle. Find the length of a side.

USING PROPERTIES Tell whether the statement is *always, sometimes,* or *never* true.

- **18.** A triangle is convex. (19.) A decagon is regular.
- **20.** A regular polygon is equiangular.
- **22.** A polygon is a plane figure.
- A circle is a polygon.
 A concave polygon is regular.
- **DRAWING** Draw a figure that fits the description.
- **24.** A triangle that is not regular
- **25.** A concave quadrilateral
- 26. A pentagon that is equilateral but not equiangular
- **27.** An octagon that is equiangular but not equilateral

W ALGEBRA Each figure is a regular polygon. Expressions are given for two side lengths. Find the value of *x*.

31. CHALLENGE Regular pentagonal tiles and triangular tiles are arranged in the pattern shown. The pentagonal tiles are all the same size and shape and the triangular tiles are all the same size and shape. Find the angle measures of the triangular tiles. Explain your reasoning.

PROBLEM SOLVING

- 32. **ARCHITECTURE** Longwood House, shown in the photograph on page 42, is located in Natchez, Mississippi. The diagram at the right shows the floor plan of a part of the house.
 - a. Tell whether the red polygon in the diagram is *convex* or *concave*.
 - **b.** Classify the red polygon and tell whether it appears to be regular.

@HomeTutor for problem solving help at classzone.com

SIGNS Each sign suggests a polygon. Classify the polygon by the number of sides. Tell whether it appears to be *equilateral*, *equiangular*, or *regular*.

b. Tell whether each polygon you sketched is concave or convex, and whether the polygon appears to be equilateral, equiangular, or regular.

= WORKED-OUT SOLUTIONS on p. WS1

EXAMPLE 2

on p. 43

39. ★ **SHORT RESPONSE** The shape of the button shown is a regular polygon. The button has a border made of silver wire. How many millimeters of silver wire are needed for this border? *Explain*.

40. ★ EXTENDED RESPONSE A segment that joins two nonconsecutive vertices of a polygon is called a *diagonal*. For example, a quadrilateral has two diagonals, as shown below.

Type of polygon	Diagram	Number of sides	Number of diagonals
Quadrilateral		4	2
Pentagon	?	?	?
Hexagon	?	?	?
Heptagon	?	?	?

a. Copy and complete the table. *Describe* any patterns you see.

- b. How many diagonals does an octagon have? a nonagon? Explain.
- **c.** The expression $\frac{n(n-3)}{2}$ can be used to find the number of diagonals in an *n*-gon. Find the number of diagonals in a 60-gon.

b. A regular pentagon

d. A regular octagon

41. LINE SYMMETRY A figure has *line symmetry* if it can be folded over exactly onto itself. The fold line is called the *line of symmetry*. A regular quadrilateral has four lines of symmetry, as shown. Find the number of lines of symmetry in each polygon.

42. CHALLENGE The diagram shows four identical squares lying edge-to-edge. Sketch all the different ways you can arrange four squares edge-to-edge. Sketch all the different ways you

can arrange five identical squares edge-to-edge.

regular quadrilateral 4 lines of symmetry

MIXED REVIEW

a. A regular triangle

c. A regular hexagon

PREVIEW Prepare for Lesson 1.7 in Exs. 43–51.	Solve the equation. 43. $\frac{1}{2}(35)b = 140$ (p. 875)	44. $x^2 = 144$ (<i>p.</i> 882)	45. 3.14 r^2 = 314 (<i>p.</i> 882)
	Copy and complete the state	ement. (p. 886)	
	46. 500 m = <u>?</u> cm	47. 12 mi = <u>?</u> ft	48. 672 in. = _?_yd
	49. 1200 km = <u>?</u> m	50. $4\frac{1}{2}$ ft = _? yd	51. 3800 m = <u>?</u> km
	Find the distance between the	he two points. <i>(p. 15)</i>	
	52. <i>D</i> (-13, 13), <i>E</i> (0, -12)	53. <i>F</i> (-9, -8), <i>G</i> (-9, 7)	54. <i>H</i> (10, 5), <i>J</i> (-2, -2)

EXTRA PRACTICE for Lesson 1.6, p. 897

ONLINE QUIZ at classzone.com

Investigating ACTIVITY Use before Lesson 1.7

@HomeTutor classzone.com Keystrokes

1.7 Investigate Perimeter and Area

MATERIALS • graph paper • graphing calculator

QUESTION How can you use a graphing calculator to find the smallest possible perimeter for a rectangle with a given area?

You can use the formulas below to find the perimeter *P* and the area *A* of a rectangle with length l and width *w*.

 $P = 2\ell + 2w \qquad \qquad A = \ell w$

EXPLORE Find perimeters of rectangles with fixed areas

STEP 1 Draw rectangles Draw different rectangles, each with an area of 36 square units. Use lengths of 2, 4, 6, 8, 10, 12, 14, 16, and 18 units.

-			2
		18	
		4	
_ 11	9		

STEP 2 Enter data Use the STATISTICS menu on a graphing calculator. Enter the rectangle lengths in List 1. Use the keystrokes below to calculate and enter the rectangle widths and perimeters in Lists 2 and 3.

Keystrokes for entering widths in List 2:

36 ÷ 2nd [L1] ENTER

Keystrokes for entering perimeters in List 3:

2 X 2nd [L1] + 2nd 2 X [L2] ENTER

STEP 3 Make a scatter plot Make a scatter plot using the lengths from List 1 as the *x*-values and the perimeters from List 3 as the *y*-values. Choose an appropriate viewing window. Then use the *trace* feature to see the coordinates of each point.

How does the graph show which of your rectangles from Step 1 has the smallest perimeter?

DRAW CONCLUSIONS Use your observations to complete these exercises

- 1. Repeat the steps above for rectangles with areas of 64 square units.
- **2.** Based on the Explore and your results from Exercise 1, what do you notice about the shape of the rectangle with the smallest perimeter?

1.7 Find Perimeter, Circumference, and Area

Before	fore You classified polygons.	
Now	You will find dimensions of polygons.	
Why?	So you can use measures in science, as in Ex. 46.	

Key Vocabulary

- perimeter, *p*. 923
- circumference, p. 923
- area, p. 923
- diameter, *p.* 923
- radius, p. 923

Recall that *perimeter* is the distance around a figure, *circumference* is the distance around a circle, and *area* is the amount of surface covered by a figure. Perimeter and circumference are measured in units of length, such as meters (m) and feet (ft). Area is measured in square units, such as square meters (m^2) and square feet (ft^2) .

111	KEY CONCEPT		For Your Notebook			
9999	Formulas for Perimeter P, Area A, and Circumference C					
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Square side length s P = 4s $A = s^2$		Rectangle length ℓ and width w $P = 2\ell + 2w$ $A = \ell w$			
	Triangle side lengths <i>a</i> , <i>b</i> , and <i>c</i> , base <i>b</i> , and height <i>h</i> P = a + b + c $A = \frac{1}{2}bh$	a h c b	Circle diameter d and radius r $C = \pi d = 2\pi r$ $A = \pi r^2$ Pi (π) is the ratio of a circle's circumference to its diameter	er.		

EXAMPLE 1

Find the perimeter and area of a rectangle

BASKETBALL Find the perimeter and area of the
rectangular basketball court shown.PerimeterArea $P = 2\ell + 2w$ $A = \ell w$ = 2(84) + 2(50)= 84(50)= 268= 4200

• The perimeter is 268 feet and the area is 4200 square feet.

EXAMPLE 2 Find the circumference and area of a circle

TEAM PATCH You are ordering circular cloth patches for your soccer team's uniforms. Find the approximate circumference and area of the patch shown.

Solution

First find the radius. The diameter is 9 centimeters,

so the radius is $\frac{1}{2}(9) = 4.5$ centimeters.

Then find the circumference and area. Use 3.14 to approximate the value of π .

 $C = 2\pi r \approx 2(3.14)(4.5) = 28.26$

$$A = \pi r^2 \approx 3.14(4.5)^2 = 63.585$$

The circumference is about 28.3 cm. The area is about 63.6 cm².

GUIDED PRACTICE for Examples 1 and 2

Find the area and perimeter (or circumference) of the figure. If necessary, round to the nearest tenth.

EXAMPLE 3 Standardized Test Practice

Triangle QRS has vertices Q(1, 2), R(4, 6), and S(5, 2). What is the approximate perimeter of triangle QRS?

A 8 units **B** 8.3 units **C** 13.1 units

D 25.4 units

Solution

AVOID ERRORS Write down your calculations to make sure you do not make a mistake substituting values in the Distance Formula.

QS = |5 - 1| = 4 units $QR = \sqrt{(4 - 1)^2 + (6 - 2)^2} = \sqrt{25} = 5 \text{ units}$ $RS = \sqrt{(5 - 4)^2 + (2 - 6)^2} = \sqrt{17} \approx 4.1 \text{ units}$

Then find the perimeter.

$$P = QS + QR + RS \approx 4 + 5 + 4.1 = 13.1$$
 units

The correct answer is C. (A) (B) (C) (D)

APPROXIMATE π The approximations

commonly used as

irrational number π . Unless told otherwise,

approximations for the

3.14 and $\frac{22}{7}$ are

use 3.14 for π .

EXAMPLE 4

Solve a multi-step problem

SKATING RINK An ice-resurfacing machine is used to smooth the surface of the ice at a skating rink. The machine can resurface about 270 square yards of ice in one minute.

About how many minutes does it take the machine to resurface a rectangular skating rink that is 200 feet long and 90 feet wide?

Solution

For an alternative method for solving the problem in Example 4, turn to page 57 for the **Problem Solving Workshop**.

ANOTHER WAY

The machine can resurface the ice at a rate of 270 square yards per minute. So, the amount of time it takes to resurface the skating rink depends on its area.

STEP 1 Find the area of the rectangular skating rink.

Area = $lw = 200(90) = 18,000 \text{ ft}^2$

The resurfacing rate is in square yards per minute. Rewrite the area of the rink in square yards. There are 3 feet in 1 yard, and $3^2 = 9$ square feet in 1 square yard.

$$18,000 \text{ ft}^2 \cdot \frac{1 \text{ yd}^2}{9 \text{ ft}^2} = 2000 \text{ yd}^2$$
 Use unit analysis.

STEP 2 Write a verbal model to represent the situation. Then write and solve an equation based on the verbal model.

Let *t* represent the total time (in minutes) needed to resurface the skating rink.

• It takes the ice-resurfacing machine about 7 minutes to resurface the skating rink.

GUID

GUIDED PRACTICE for Examples 3 and 4

- Describe how to find the height from F to EG in the triangle at the right.
- **5.** Find the perimeter and the area of the triangle shown at the right.
- 6. WHAT IF? In Example 4, suppose the skating rink is twice as long and twice as wide. Will it take an ice-resurfacing machine twice as long to resurface the skating rink? *Explain* your reasoning.

EXAMPLE 5 Find unknown length

The base of a triangle is 28 meters. Its area is 308 square meters. Find the height of the triangle.

Solution

 $A = \frac{1}{2}bh$

Write formula for the area of a triangle.

 $308 = \frac{1}{2}(28)h$ Substitute 308 for *A* and 28 for *b*.

22 = h Solve for *h*.

▶ The height is 22 meters.

7. The area of a triangle is 64 square meters, and its height is 16 meters. Find the length of its base.

- 1. VOCABULARY How are the diameter and radius of a circle related?
- 2. ★ WRITING *Describe* a real-world situation in which you would need to find a perimeter, and a situation in which you would need to find an area. What measurement units would you use in each situation?

EXAMPLE 1 on p. 49 for Exs. 3–10

3. ERROR ANALYSIS *Describe* and correct the error made in finding the area of a triangle with a height of 9 feet and a base of 52 feet.

 $A = 52(9) = 468 \text{ ft}^2$

28 m

PERIMETER AND AREA Find the perimeter and area of the shaded figure.

10. DRAWING A DIAGRAM The base of a triangle is 32 feet. Its height is

 $16\frac{1}{2}$ feet. Sketch the triangle and find its area.

h

8 in.

- **31. (37) ALGEBRA** The area of a rectangle is 18 square inches. The length of the rectangle is twice its width. Find the length and width of the rectangle.
- **32. (32) ALGEBRA** The area of a triangle is 27 square feet. Its height is three times the length of its base. Find the height and base of the triangle.
- **33. (2) ALGEBRA** Let *x* represent the side length of a square. Find a regular polygon with side length *x* whose perimeter is twice the perimeter of the square. Find a regular polygon with side length *x* whose perimeter is three times the length of the square. *Explain* your thinking.

FINDING SIDE LENGTHS Find the side length of the square with the given area. Write your answer as a radical in simplest form.

34. $A = 184 \text{ cm}^2$ **35.** $A = 346 \text{ in.}^2$ **36.** $A = 1008 \text{ mi}^2$

- **37.** $A = 1050 \text{ km}^2$
- 38. ★ SHORT RESPONSE In the diagram, the diameter of the yellow circle is half the diameter of the red circle. What fraction of the area of the red circle is *not* covered by the yellow circle? *Explain*.
- \bigcirc
- **39. CHALLENGE** The area of a rectangle is 30 cm^2 and its perimeter is 26 cm. Find the length and width of the rectangle.

PROBLEM SOLVING

EXAMPLES 1 and 2 on pp. 49–50 for Exs. 40–41

40. WATER LILIES The giant Amazon water lily has a lily pad that is shaped like a circle. Find the circumference and area of a lily pad with a diameter of 60 inches. Round your answers to the nearest tenth.

@HomeTutor) for problem solving help at classzone.com

41. LAND You are planting grass on a rectangular plot of land. You are also building a fence around the edge of the plot. The plot is 45 yards long and 30 yards wide. How much area do you need to cover with grass seed? How many feet of fencing do you need?

@HomeTutor for problem solving help at classzone.com

example 4 on p. 51 for Ex. 42

- **42. MULTI-STEP PROBLEM** Chris is installing a solar panel. The maximum amount of power the solar panel can generate in a day depends in part on its area. On a sunny day in the city where Chris lives, each square meter of the panel can generate up to 125 watts of power. The flat rectangular panel is 84 centimeters long and 54 centimeters wide.
 - a. Find the area of the solar panel in square meters.
 - **b.** What is the maximum amount of power (in watts) that the panel could generate if its area was 1 square meter? 2 square meters? *Explain*.
 - **c.** Estimate the maximum amount of power Chris's solar panel can generate. *Explain* your reasoning.

- **43. MULTI-STEP PROBLEM** The eight spokes of a ship's wheel are joined at the wheel's center and pass through a large wooden circle, forming handles on the outside of the circle. From the wheel's center to the tip of the handle, each spoke is 21 inches long.
 - **a.** The circumference of the outer edge of the large wooden circle is 94 inches. Find the radius of the outer edge of the circle to the nearest inch.

b. Find the length *x* of a handle on the wheel. *Explain*.

44. \diamondsuit MULTIPLE REPRESENTATIONS Let *x* represent the length of a side of a square. Let y_1 and y_2 represent the perimeter and area of that square.

a. Making a Table Copy and complete the table.

Length, x	1	2	5	10	25
Perimeter, y ₁	?	?	?	?	?
Area, y ₂	?	?	?	?	?

- **b.** Making a Graph Use the completed table to write two sets of ordered pairs: (x, y_1) and (x, y_2) . Graph each set of ordered pairs.
- **c. Analyzing Data** *Describe* any patterns you see in the table from part (a) and in the graphs from part (b).
- **45.** ★ EXTENDED RESPONSE The photograph at the right shows the Crown Fountain in Chicago, Illinois. At this fountain, images of faces appear on a large screen. The images are created by light-emitting diodes (LEDs) that are clustered in groups called modules. The LED modules are arranged in a rectangular grid.
 - **a.** The rectangular grid is approximately 7 meters wide and 15.2 meters high. Find the area of the grid.
 - **b.** Suppose an LED module is a square with a side length of 4 centimeters. How many rows and how many columns of LED modules would be needed to make the Crown Fountain screen? *Explain* your reasoning.

- **46. ASTRONOMY** The diagram shows a gap in Saturn's circular rings. This gap is known as the *Cassini division*. In the diagram, the red circle represents the ring that borders the inside of the Cassini division. The yellow circle represents the ring that borders the outside of the division.
 - **a.** The radius of the red ring is 115,800 kilometers. The radius of the yellow ring is 120,600 kilometers. Find the circumference of the red ring and the circumference of the yellow ring. Round your answers to the nearest hundred kilometers.
 - **b.** Compare the circumferences of the two rings. About how many kilometers greater is the yellow ring's circumference than the red ring's circumference?

Cassini division

- **47. CHALLENGE** In the diagram at the right, how many times as great is the area of the circle as the area of the square? *Explain* your reasoning.
- **48. W ALGEBRA** You have 30 yards of fencing with which to make a rectangular pen. Let *x* be the length of the pen.
 - **a.** Write an expression for the width of the pen in terms of *x*. Then write a formula for the area *y* of the pen in terms of *x*.
 - **b.** You want the pen to have the greatest possible area. What length and width should you use? *Explain* your reasoning.

MIXED REVIEW

PREVIEW Prepare for Lesson 2.1 in Exs. 49–50.

49. U	Se the equation $y = 2$.	+ 1 to copy and c	complete the table	of values. (p. 884)
--------------	---------------------------	-------------------	--------------------	---------------------

x	1	2	3	4	5
у	?	?	?	?	?

50. Each number in a pattern is 6 less than the previous number. The first number in the pattern is 100. Write the next three numbers. (*p.* 894)

In Exercises 51 and 52, draw a diagram to represent the problem. Then find the indicated measure. (p. 42)

- **51.** The lengths (in inches) of two sides of a regular triangle are given by the expressions 5x + 40 and 8x 13. Find the length of a side of the triangle.
- **52.** The measures of two angles of an equiangular hexagon are $12x^{\circ}$ and $(10x + 20)^{\circ}$. Find the measure of an angle of the hexagon.

QUIZ for Lessons 1.6–1.7

Tell whether the figure is a polygon. If it is not, *explain* why. If it is a polygon, tell whether it is *convex* or *concave*. (p. 42)

Find the perimeter and area of the shaded figure. (p. 49)

7. GARDENING You are spreading wood chips on a rectangular garden. The garden is $3\frac{1}{2}$ yards long and $2\frac{1}{2}$ yards wide. One bag of wood chips covers 10 square feet. How many bags of wood chips do you need? (*p. 49*)

Using ALTERNATIVE METHODS

Another Way to Solve Example 4, page 51

MULTIPLE REPRESENTATIONS In Example 4 on page 51, you saw how to use an equation to solve a problem about a skating rink. *Looking for a pattern* can help you write an equation.

PROBLEM

SKATING RINK An ice-resurfacing machine is used to smooth the surface of the ice at a skating rink. The machine can resurface about 270 square yards of ice in one minute. About how many minutes does it take the machine to resurface a rectangular skating rink that is 200 feet long and 90 feet wide?

Метнор

Using a Pattern You can use a table to look for a pattern.

- *STEP 1* Find the area of the rink in square yards. In Example 4 on page 51, you found that the area was 2000 square yards.
- *STEP 2* Make a table that shows the relationship between the time spent resurfacing the ice and the area resurfaced. Look for a pattern.

Time (min)	Area resurfaced (yd ²)		
1	1 • 270 = 270		
2	2 • 270 = 540		
t	t • 270 = A ◀…		

Use the pattern to write an equation for the area *A* that has been resurfaced after *t* minutes.

STEP 3 Use the equation to find the time *t* (in minutes) that it takes the machine to resurface 2000 square yards of ice.

It takes about 7 minutes.

270t = A270t = 2000 $t \approx 7.4$

PRACTICE

- 1. **PLOWING** A square field is $\frac{1}{8}$ mile long on each side. A tractor can plow about 180,000 square feet per hour. To the nearest tenth of an hour, about how long does it take to plow the field? (1 mi = 5280 ft.)
- **2. ERROR ANALYSIS** To solve Exercise 1 above, a student writes the equation 660 = 180,000t, where *t* is the number of hours spent plowing. *Describe* and correct the error in the equation.
- **3. PARKING LOT** A rectangular parking lot is 110 yards long and 45 yards wide. It costs about \$.60 to pave each square foot of the parking lot with asphalt. About how much will it cost to pave the parking lot?
- 4. WALKING A circular path has a diameter of 120 meters. Your average walking speed is 4 kilometers per hour. About how many minutes will it take you to walk around the path 3 times?

MIXED REVIEW of Problem Solving

Lessons 1.4-1.7

- 1. **MULTI-STEP PROBLEM** You are covering the rectangular roof of a shed with shingles. The roof is a rectangle that is 4 yards long and 3 yards wide. Asphalt shingles cost \$.75 per square foot and wood shingles cost \$1.15 per square foot.
 - **a.** Find the area of the roof in square feet.
 - **b.** Find the cost of using asphalt shingles and the cost of using wood shingles.
 - **c.** About how much more will you pay to use wood shingles for the roof?
- 2. **OPEN-ENDED** In the window below, name a convex polygon and a concave polygon. Classify each of your polygons by the number of sides.

3. EXTENDED RESPONSE The diagram shows a decoration on a house. In the diagram, $\angle HGD$ and $\angle HGF$ are right angles, $m \angle DGB = 21^{\circ}, m \angle HBG = 55^{\circ},$ $\angle DGB \cong \angle FGC$, and $\angle HBG \cong \angle HCG$.

- **a.** List two pairs of complementary angles and five pairs of supplementary angles.
- **b.** Find $m \angle FGC$, $m \angle BGH$, and $m \angle HGC$. *Explain* your reasoning.
- **c.** Find *m∠HCG*, *m∠DBG*, and *m∠FCG*. *Explain* your reasoning.
- 4. GRIDDED ANSWER ∠1 and ∠2 are supplementary angles, and ∠1 and ∠3 are complementary angles. Given m∠1 is 28° less than m∠2, find m∠3 in degrees.

5. EXTENDED RESPONSE You use bricks to outline the borders of the two gardens shown below. Each brick is 10 inches long.

- **a.** You lay the bricks end-to-end around the border of each garden. How many bricks do you need for each garden? *Explain*.
- **b.** The bricks are sold in bundles of 100. How many bundles should you buy? *Explain*.
- 6. **SHORT RESPONSE** The frame of a mirror is a regular pentagon made from pieces of bamboo. Use the diagram to find how many feet of bamboo are used in the frame.

7. **GRIDDED ANSWER** As shown in the diagram, a skateboarder tilts one end of a skateboard. Find $m \angle ZWX$ in degrees.

8. SHORT RESPONSE Use the diagram below.

- **a.** Find the perimeter of quadrilateral *ABCD*.
- **b.** Find the area of triangle *ABC* and the area of triangle *ADC*. What is the area of quadrilateral *ABCD*? *Explain*.

CHAPTER SUMMARY

BIG IDEAS

For Your Notebook

Describing Geometric Figures

You learned to identify and classify geometric figures.

Measuring Geometric Figures

SEGMENTS You measured segments in the coordinate plane.

Distance Formula

Distance between $A(x_1, y_1)$ and $B(x_2, y_2)$:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Midpoint Formula

Coordinates of midpoint *M* of \overline{AB} , with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$:

$$M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

ANGLES You classified angles and found their measures.

Complementary angles

$$m \angle 1 + m \angle 2 = 90^{\circ}$$

Supplementary angles $m \angle 3 + m \angle 4 = 180^{\circ}$

FORMULAS Perimeter and area formulas are reviewed on page 49.

Big Idea 🔞

Big Idea 🚺

Big Idea [2]

Understanding Equality and Congruence

Congruent segments have equal lengths. Congruent angles have equal measures.

$$A = B = C$$

 $AB \cong BC$ and AB = BC

 $\angle JKL \cong \angle LKM$ and $m \angle JKL = m \angle LKM$

Chapter Summary 59

CHAPTER REVIEW

REVIEW KEY VOCABULARY

- For a list of postulates and theorems, see pp. 926–931.
- undefined terms, p. 2 point, line, plane
- collinear, coplanar points, p. 2
- defined terms, p. 3
- line segment, endpoints, p. 3
- ray, opposite rays, p. 3
- intersection, p. 4
- postulate, axiom, p. 9
- coordinate, p. 9
- distance, p. 9
- between, p. 10

- congruent segments, p. 11
- midpoint, p. 15
- segment bisector, p. 15
- angle, p. 24 sides, vertex, measure
- acute, right, obtuse, straight, p. 25
- congruent angles, p. 26
- angle bisector, p. 28
- construction, p. 33
- complementary angles, p. 35

- supplementary angles, p. 35
- adjacent angles, p. 35
- linear pair, p. 37
- vertical angles, p. 37
- polygon, p. 42 side, vertex
- convex, concave, p. 42
- *n*-gon, *p.* 43
- equilateral, equiangular, regular, p. 43

VOCABULARY EXERCISES

- **1.** Copy and complete: Points *A* and *B* are the $\underline{?}$ of \overline{AB} .
- 2. Draw an example of a *linear pair*.
- **3.** If *Q* is between points *P* and *R* on \overrightarrow{PR} , and PQ = QR, then *Q* is the <u>?</u> of \overrightarrow{PR} .

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 1.

- @HomeTutor classzone.com
- Multi-Language Glossary
- Vocabulary Practice

@HomeTutor classzone.com Chapter Review Practice

12. The endpoints of \overline{DE} are D(-4, 11) and E(-4, -13). The endpoints of \overline{GH} are G(-14, 5) and H(-9, 5). Are \overline{DE} and \overline{GH} congruent? *Explain*.

1.3 Use Midpoint and Distance Formulas

pp. 15–22

EXAMPLE

 \overline{EF} has endpoints E(1, 4) and F(3, 2). Find (a) the length of \overline{EF} rounded to the nearest tenth of a unit, and (b) the coordinates of the midpoint M of \overline{EF} .

a. Use the Distance Formula.

$$EF = \sqrt{(3-1)^2 + (2-4)^2} = \sqrt{2^2 + (-2)^2} = \sqrt{8} \approx 2.8$$
 units

b. Use the Midpoint Formula.

$$M\left(\frac{1+3}{2},\frac{4+2}{2}\right) = M(2,3)$$

EXERCISES

13. Point *M* is the midpoint of \overline{JK} . Find *JK* when JM = 6x - 7 and MK = 2x + 3.

In Exercises 14–17, the endpoints of a segment are given. Find the length of the segment rounded to the nearest tenth. Then find the coordinates of the midpoint of the segment.

14. $A(2, 5)$ and $B(4, 3)$	15. <i>F</i> (1, 7) and <i>G</i> (6, 0)
16. $H(-3, 9)$ and $J(5, 4)$	17. <i>K</i> (10, 6) and <i>L</i> (0, −7)

- **18.** Point C(3, 8) is the midpoint of \overline{AB} . One endpoint is A(-1, 5). Find the coordinates of endpoint *B*.
- **19.** The endpoints of \overline{EF} are E(2, 3) and F(8, 11). The midpoint of \overline{EF} is M. Find the length of \overline{EM} .

EXAMPLES 2, 3, and 4 on pp. 16–18 for Exs. 13–19

CHAPTER REVIEW

EXAMPLES 3 and 5 on pp. 26, 28 for Exs. 20-21

EXAMPLES 2 and 3

on p. 36 for Exs. 22–31 Find $m \angle PMN$.

21. \overrightarrow{VZ} bisects $\angle UVW$, and $m \angle UVZ = 81^\circ$. Find $m \angle UVW$. Then classify $\angle UVW$ by its angle measure.

1.5 **Describe Angle Pair Relationships**

pp. 35-41

EXAMPLE

- a. $\angle 1$ and $\angle 2$ are complementary angles. Given that $m \angle 1 = 37^\circ$, find $m \angle 2$. $m \angle 2 = 90^{\circ} - m \angle 1 = 90^{\circ} - 37^{\circ} = 53^{\circ}$
- b. $\angle 3$ and $\angle 4$ are supplementary angles. Given that $m \angle 3 = 106^\circ$, find $m \angle 4$. $m \angle 4 = 180^{\circ} - m \angle 3 = 180^{\circ} - 106^{\circ} = 74^{\circ}$

EXERCISES

 $\angle 1$ and $\angle 2$ are complementary angles. Given the measure of $\angle 1$, find $m \angle 2$.

22. $m \angle 1 = 12^{\circ}$ **23.** $m \angle 1 = 83^{\circ}$ **24.** $m \angle 1 = 46^{\circ}$ **25.** $m \angle 1 = 2^{\circ}$

$\angle 3$ and $\angle 4$ are supplementary angles. Given the measure of $\angle 3$, find $m \angle 4$.

26. $m \angle 3 = 116^{\circ}$ **27.** $m \angle 3 = 56^{\circ}$ **28.** $m \angle 3 = 89^{\circ}$ **29.** $m \angle 3 = 12^{\circ}$

- **30.** $\angle 1$ and $\angle 2$ are complementary angles. Find the measures of the angles when $m \angle 1 = (x - 10)^{\circ}$ and $m \angle 2 = (2x + 40)^{\circ}$.
- **31.** $\angle 1$ and $\angle 2$ are supplementary angles. Find the measures of the angles when $m \angle 1 = (3x + 50)^\circ$ and $m \angle 2 = (4x + 32)^\circ$. Then classify $\angle 1$ by its angle measure.

EXAMPLE

The diameter of a circle is 10 feet. Find the circumference and area of the circle. Round to the nearest tenth.

The radius is half of the length of the diameter, so $r = \frac{1}{2}(10) = 5$ ft.

Circumference

Area

 $A = \pi r^2 \approx 3.14(5^2) = 78.5 \text{ ft}^2$

 $C = 2\pi r \approx 2(3.14)(5) = 31.4$ ft

EXERCISES

In Exercises 36–38, find the perimeter (or circumference) and area of the figure described. If necessary, round to the nearest tenth.

36. Circle with diameter 15.6 meters

- **37.** Rectangle with length $4\frac{1}{2}$ inches and width $2\frac{1}{2}$ inches
- **38.** Triangle with vertices *U*(1, 2), *V*(-8, 2), and *W*(-4, 6)
- **39.** The height of a triangle is 18.6 meters. Its area is 46.5 square meters. Find the length of the triangle's base.
- **40.** The area of a circle is 320 square meters. Find the radius of the circle. Then find the circumference. Round your answers to the nearest tenth.

EXAMPLES 1, 2, and 3 on pp. 49–50 for Exs. 36–40

CHAPTER TEST

Use the diagram to decide whether the statement is true or false.

- **1.** Point *A* lies on line *m*.
- **2.** Point *D* lies on line *n*.
- 3. Points *B*, *C*, *E*, and *Q* are coplanar.
- 4. Points *C*, *E*, and *B* are collinear.
- **5.** Another name for plane *G* is plane *QEC*.

Find the indicated length.

6. Find *HJ*.

7. Find *BC*.

In Exercises 9–11, find the distance between the two points.

- **9.** *T*(3, 4) and *W*(2, 7)
- **10.** *C*(5, 10) and *D*(6, −1)
- **11.** M(-8, 0) and N(-1, 3)

z

45

- **12.** The midpoint of \overline{AB} is M(9, 7). One endpoint is A(3, 9). Find the coordinates of endpoint *B*.
- **13.** Line *t* bisects \overline{CD} at point *M*, CM = 3x, and MD = 27. Find *CD*.

In Exercises 14 and 15, use the diagram.

- 14. Trace the diagram and extend the rays. Use a protractor to measure $\angle GHJ$. Classify it as *acute*, *obtuse*, *right*, or *straight*.
- **15.** Given $m \angle KHJ = 90^\circ$, find $m \angle LHJ$.
- **16.** The measure of $\angle QRT$ is 154°, and \overrightarrow{RS} bisects $\angle QRT$. What are the measures of $\angle QRS$ and $\angle SRT$?

In Exercises 17 and 18, use the diagram at the right.

- 17. Name four linear pairs.
- 18. Name two pairs of vertical angles.
- **19.** The measure of an angle is 64°. What is the measure of its complement? What is the measure of its supplement?
- **20.** A convex polygon has half as many sides as a concave 10-gon. Draw the concave polygon and the convex polygon. Classify the convex polygon by the number of sides it has.
- 21. Find the perimeter of the regular pentagon shown at the right.
- **22. CARPET** You can afford to spend \$300 to carpet a room that is 5.5 yards long and 4.5 yards wide. The cost to purchase and install the carpet you like is \$1.50 per square foot. Can you afford to buy this carpet? *Explain*.

8. Find *XZ*.

26

W ALGEBRA REVIEW

Animated Algebra

SOLVE LINEAR EQUATIONS AND WORD PROBLEMS

xy	EXAMPLE 1 Solve linear equations					
	Solve the equation $-3(x + 5) + 4x = 25$.					
	-3(x+5) + 4x = 25	Write original equation.				
	-3x - 15 + 4x = 25	Use the Distributive Property.				
	x - 15 = 25	Group and combine like terms.				
	x = 40	Add 15 to each side.				
6						

EXAMPLE 2 Solve a real-world problem

MEMBERSHIP COSTS A health club charges an initiation fee of \$50. Members then pay \$45 per month. You have \$400 to spend on a health club membership. For how many months can you afford to be a member?

Let *n* represent the number of months you can pay for a membership.

400 = 50 + 45n **Substitute.**

EXERCISES

350 = 45n Subtract 50 from each side.

7.8 = n Divide each side by 45.

> You can afford to be a member at the health club for 7 months.

EXAMPLE 1	Solve the equation.		
for Exs. 1–9	1. $9y + 1 - y = 49$	2. $5z + 7 + z = -8$	3. $-4(2 - t) = -16$
	4. $7a - 2(a - 1) = 17$	5. $\frac{4x}{3} + 2(3 - x) = 5$	6. $\frac{2x-5}{7} = 4$
	7. $9c - 11 = -c + 29$	8. $2(0.3r+1) = 23 - 0.1r$	9. $5(k+2) = 3(k-4)$
EXAMPLE 2 for Exs. 10–12	10. GIFT CERTIFICATE You have buy a book that costs \$8. box costs \$4.59. How maximum costs \$4.59.	ave a \$50 gift certificate at a sto 99 and boxes of stationery for y ny boxes can you buy with your	re. You want to our friends. Each gift certificate?
	11. CATERING It costs \$350 t a caterer. The caterer cha come to the party if you	to rent a room for a party. You a arges \$8.75 per person. How ma have \$500 to spend on the room	lso want to hire ny people can a and the caterer?
	12. JEWELRY You are makin	g a necklace out of glass beads.	You use one bead
	that is $1\frac{1}{2}$ inches long and	l smaller beads that are each $\frac{3}{4}$	inch long. The
	necklace is 18 inches lon	g. How many smaller beads do j	you need?

***** Standardized **TEST PREPARATION**

Scoring Rubric

Full Credit

 solution is complete and correct

Partial Credit

- solution is complete but has errors, or
- solution is without error but incomplete

No Credit

- no solution is given, or
- solution makes no sense

SHORT RESPONSE QUESTIONS

PROBLEM

You want to rent portable flooring to set up a dance floor for a party. The table below shows the cost of renting portable flooring from a local company. You want to have a rectangular dance floor that is 5 yards long and 4 yards wide. How much will it cost to rent flooring? *Explain* your reasoning.

If the floor area is	Then the cost is	
less than 100 square feet	\$6.50 per square foot	
between 100 and 200 square feet	\$6.25 per square foot	

Below are sample solutions to the problem. Read each solution and the comments in blue to see why the sample represents full credit, partial credit, or no credit.

SAMPLE 1: Full credit solution

 $20 \text{ yd}^2 \cdot \frac{9 \text{ ft}^2}{1 \text{ yd}^2} = 180 \text{ ft}^2$

Find the area of the dance floor. Area = $\ell w = 5(4) = 20 \text{ yd}^2$.

Then convert this area to square feet. There are $3^2 = 9$ ft² in 1 yd².

The reasoning is correct, and the computations are accurate.

The answer is correct.

Because 180 ft^2 is between 100 ft^2 and 200 ft^2 , the price of flooring is \$6.25 per square foot. Multiply the price per square foot by the area.

Total cost =
$$\frac{\$6.25}{1 \ \text{ft}^2} \cdot 180 \ \text{ft}^2 = \$1123$$

It will cost \$1125 to rent flooring.

SAMPLE 2: Partial credit solution

The area of the dance floor is 5(4) = 20 square yards. Convert this area to square feet. There are 3 feet in 1 yard.

$$20 \text{ yd}^2 \cdot \frac{3 \text{ ft}^2}{1 \text{ yd}^2} = 60 \text{ ft}^2$$

The flooring will cost \$6.50 per square foot because 60 ft^2 is less than 100 ft^2 . To find the total cost, multiply the area by the cost per square foot.

$$60 \text{ ft}^2 \cdot \frac{\$6.50}{1 \text{ ft}^2} = \$390$$

It will cost \$390 to rent flooring.

The reasoning is

correct, but an incorrect conversion leads to an incorrect answer.

SAMPLE 3: Partial credit solution

The computations and the answer are correct, but the reasoning is incomplete. The area of the room is 180 ft², so the flooring price is \$6.25. The total cost is $180 \cdot 6.25 = 1125 .

It will cost \$1125 to rent flooring.

SAMPLE 4: No credit solution

The student's reasoning is incorrect, and the answer is incorrect.

Floor area = $4 \times 5 = 20$. Cost = $20 \times $650 = $13,000$.

It will cost \$13,000 to rent flooring.

PRACTICE Apply the Scoring Rubric

Use the rubric on page 66 to score the solution to the problem below as *full credit, partial credit,* or *no credit. Explain* your reasoning.

PROBLEM You have 450 daffodil bulbs. You divide a 5 yard by 2 yard rectangular garden into 1 foot by 1 foot squares. You want to plant the same number of bulbs in each square. How many bulbs should you plant in each square? *Explain* your reasoning.

- 1. First find the area of the plot in square feet. There are 3 feet in 1 yard, so the length is 5(3) = 15 feet, and the width is 2(3) = 6 feet. The area is 15(6) = 90 square feet. The garden plot can be divided into 90 squares with side length 1 foot. Divide 450 by 90 to get 5 bulbs in each square.
- 2. The area of the garden plot is 5(2) = 10 square yards. There are 3 feet in 1 yard, so you can multiply 10 square yards by 3 to get an area of 30 square feet. You can divide the garden plot into 30 squares. To find how many bulbs per square, divide 450 bulbs by 30 to get 15 bulbs.
- 3. Divide 450 by the area of the plot: 450 bulbs \div 10 yards = 45 bulbs. You should plant 45 bulbs in each square.
- 4. Multiply the length and width by 3 feet to convert yards to feet. The area is $15 \text{ ft} \times 6 \text{ ft} = 90 \text{ ft}^2$. Divide the garden into 90 squares.

5 yd = 15 ft

2 yd = 6 ft

***** Standardized **TEST PRACTICE**

SHORT RESPONSE

- 1. It costs \$2 per square foot to refinish a hardwood floor if the area is less than 300 square feet, and \$1.75 per square foot if the area is greater than or equal to 300 square feet. How much does it cost to refinish a rectangular floor that is 6 yards long and 4.5 yards wide? *Explain* your reasoning.
- 2. As shown below, the library (point *L*) and the Town Hall (point *T*) are on the same straight road. Your house is on the same road, halfway between the library and the Town Hall. Let point *H* mark the location of your house. Find the coordinates of *H* and the approximate distance between the library and your house. *Explain* your reasoning.

3. The water in a swimming pool evaporates over time if the pool is not covered. In one year, a swimming pool can lose about 17.6 gallons of water for every square foot of water that is exposed to air. About how much water would evaporate in one year from the surface of the water in the pool shown? *Explain* your reasoning.

4. A company is designing a cover for a circular swimming pool. The diameter of the pool is 20 feet. The material for the cover costs \$4 per square yard. About how much will it cost the company to make the pool cover? *Explain* your reasoning.

5. You are making a mat with a fringed border. The mat is shaped like a regular pentagon, as shown below. Fringe costs \$1.50 per yard. How much will the fringe for the mat cost? *Explain* your reasoning.

- 6. Angles *A* and *B* are complementary angles, $m \angle A = (2x - 4)^\circ$, and $m \angle B = (4x - 8)^\circ$. Find the measure of the supplement of $\angle B$. *Explain* your reasoning.
- 7. As shown on the map, you have two ways to drive from Atkins to Canton. You can either drive through Baxton, or you can drive directly from Atkins to Canton. About how much shorter is the trip from Atkins to Canton if you do not go through Baxton? *Explain* your reasoning.

8. A jeweler is making pairs of gold earrings. For each earring, the jeweler will make a circular hoop like the one shown below. The jeweler has 2 meters of gold wire. How many pairs of gold hoops can the jeweler make? *Justify* your reasoning.

MULTIPLE CHOICE

- **9.** The midpoint of \overline{AB} is M(4, -2). One endpoint is A(-2, 6). What is the length of \overline{AB} ?
 - **A** 5 units
 - **B** 10 units
 - **C** 20 units
 - **D** 28 units
- **10.** The perimeter of a rectangle is 85 feet. The length of the rectangle is 4 feet more than its width. Which equation can be used to find the width *w* of the rectangle?
 - (A) 85 = 2(w+4)
 - **B** 85 = 2w + 2(w 4)
 - (C) 85 = 2(2w + 4)
 - **D** 85 = w(w+4)

GRIDDED ANSWER

11. In the diagram, \overrightarrow{YW} bisects $\angle XYZ$. Find $m \angle XYZ$ in degrees.

- **12.** Angles *A* and *B* are complements, and the measure of $\angle A$ is 8 times the measure of $\angle B$. Find the measure (in degrees) of the supplement of $\angle A$.
- **13.** The perimeter of the triangle shown is 400 feet. Find its area in square feet.

EXTENDED RESPONSE

- 14. The athletic director at a college wants to build an indoor playing field. The playing field will be twice as long as it is wide. Artificial turf costs \$4 per square foot. The director has \$50,000 to spend on artificial turf.
 - **a.** What is the largest area that the director can afford to cover with artificial turf? *Explain*.
 - **b.** Find the approximate length and width of the field to the nearest foot.
- **15.** An artist uses black ink to draw the outlines of 30 circles and 25 squares, and red ink to fill in the area of each circle and square. The diameter of each circle is 1 inch, and the side length of each square is 1 inch. Which group of drawings uses more black ink, the *circles* or the *squares*? Which group of drawings uses more red ink? *Explain*.
- **16.** Points *A* and *C* represent the positions of two boats in a large lake. Point *B* represents the position of a fixed buoy.
 - **a.** Find the distance from each boat to the buoy.
 - **b.** The boat at point *A* travels toward the buoy in a straight line at a rate of 5 kilometers per hour. The boat at point *C* travels to the buoy at a rate of 5.2 kilometers per hour. Which boat reaches the buoy first? *Explain*.

