GEOMETRY

Ron Larson
Laurie Boswell
Timothy D．Kanold Lee Stiff

About Geometry

In Geometry, you will develop reasoning and problem solving skills as you study topics such as congruence and similarity, and apply properties of lines, triangles, quadrilaterals, and circles. You will also develop problem solving skills by using length, perimeter, area, circumference, surface area, and volume to solve real-world problems.

In addition to its geometry content, Geometry includes numerous examples and exercises involving algebra, data analysis, and probability. These math topics often appear on standardized tests, so maintaining your familiarity with them is important. To help you prepare for standardized tests, Geometry provides instruction and practice on standardized test questions in a variety of formats-multiple choice, short response, extended response, and so on. Technology support for both learning geometry and preparing for standardized tests is available at classzone.com.

Copyright © 2007 McDougal Littell, a division of Houghton Mifflin Company.

All rights reserved.
Warning: No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system without the prior written permission of McDougal Littell unless such copying is expressly permitted by federal copyright law. Address inquiries to Supervisor, Rights and Permissions, McDougal Littell, P.O. Box 1667, Evanston, IL 60204.

ISBN-13: 978-0-6185-9540-2
ISBN-10: 0-618-59540-6 123456789—DWO—09 08070605

Internet Web Site: http://www.mcdougallittell.com

About the Authors

Ron Larson is a professor of mathematics at Penn State University at Erie, where he has taught since receiving his Ph.D. in mathematics from the University of Colorado. Dr. Larson is well known as the author of a comprehensive program for mathematics that spans middle school, high school, and college courses. Dr. Larson's numerous professional activities keep him in constant touch with the needs of teachers and supervisors. He closely follows developments in mathematics standards and assessment.

Laurie Boswell is a mathematics teacher at The Riverside School in Lyndonville, Vermont, and has taught mathematics at all levels, elementary through college. A recipient of the Presidential Award for Excellence in Mathematics Teaching, she was also a Tandy Technology Scholar. She served on the NCTM Board of Directors (2002-2005), and she speaks frequently at regional and national conferences on topics related to instructional strategies and course content.

Timothy D. Kanold is the superintendent of Adlai E. Stevenson High School District 125 in Lincolnshire, Illinois. Dr. Kanold served as a teacher and director of mathematics for 17 years prior to becoming superintendent. He is the recipient of the Presidential Award for Excellence in Mathematics and Science Teaching, and a past president of the Council for Presidential Awardees in Mathematics. Dr. Kanold is a frequent speaker at national and international mathematics meetings.

Lee Stiff is a professor of mathematics education in the College of Education and Psychology of North Carolina State University at Raleigh and has taught mathematics at the high school and middle school levels. He served on the NCTM Board of Directors and was elected President of NCTM for the years 2000-2002. He is a recipient of the W. W. Rankin Award for Excellence in Mathematics Education presented by the North Carolina Council of Teachers of Mathematics.

Advisers and Reviewers

Curriculum Advisers and Reviewers

Vincent J. Bondi
Mathematics Department Chair
Radnor High School
Radnor, PA

Anne Papakonstantinou

Director, School Mathematics Project
Rice University
Houston, TX

Richard Parr

Director of Educational Technology, School Mathematics Project
Rice University
Houston, TX

Katherine G. Petersen

Mathematics Teacher
Hammond School
Columbia, SC

Alice Rau

Mathematics Teacher
Francis Scott Key High School
Union Bridge, MD

Diane Sorrels

Mathematics Department Chair and Teacher
Robert E. Lee High School
Tyler, TX

Ohio Panel

Todd Brenn	Jeff Neuman	Carlo T. Trafficante
Mathematics Teacher	Mathematics Teacher	Mathematics Teacher
Roosevelt High School	Brunswick High School Kent, OH	Arunswick, OH Sinetta Maul
Bruce Olson Austintown, OH		
Mathematics Teacher	Mathematics Teacher	Andrew Tripoulas
Ashland High School	Canal Winchester High School	Mathematics Teacher
Ashland, OH	Canal Winchester, OH	Warren G. Harding
		High School
Cathy J. Miller	Julia Pfeil	Warren, OH
Mathematics Teacher	Mathematics Teacher	
Copley High School	Colonel White High School	Vicki L. White
Copley, OH	Dayton, OH	Mathematics Teacher
		Strongsville High School

Texas Panel

Nancy Arroyo
Mathematics Department Chair Riverside High School El Paso, TX
\section*{Juan A. Cardenas}
Mathematics Department Chair
Sam Houston High School
San Antonio, TX
\section*{Rita Hines Freeman}
Mathematics Teacher
Townview Science and Engineering Magnet High School
Dallas, TX

Whitney Hendriex

Mathematics Specialist
Lee High School
Midland, TX

Betsy A. Norris
Mathematics Teacher
Southwest High School
Ft. Worth, TX
Janell O'Loughlin
Mathematics Department Chair
Pasadena High School
Pasadena, TX

Shauna Suggs

Mathematics Teacher
R.L. Turner High School Carrollton, TX

Richard Treviño

Mathematics Teacher
Martin High School
Laredo, TX

Patricia Winkler

Mathematics Teacher and Instructional Technologist Michael E. DeBakey High School Houston, TX

Unit 1 Points, Lines, and Planes

Essentials of Geometry

Prerequisite Skills xxii
1.1 Identify Points, Lines, and Planes 2
1.2 Use Segments and Congruence 9
1.3 Use Midpoint and Distance Formulas 15
Mixed Review of Problem Solving 23
1.4 Measure and Classify Angles 24
O Investigating Geometry Construction: Copy and Bisect Segments and Angles 33
1.5 Describe Angle Pair Relationships 35
1.6 Classify Polygons 42
1.7 Find Perimeter, Circumference, and Area 49
Investigating Geometry Activity: Investigate Perimeter and Area 48
Problem Solving Workshop 57
Mixed Review of Problem Solving 58
ASSESSMENT
Quizzes 22, 41, 56
Chapter Summary and Review 59
Chapter Test 64
Algebra Review: Solve Linear Equations and Word Problems 65
\star Standardized Test Preparation and Practice 66

Activities
$1,3,14,21,25,43,52$

Chapter 1 Highlights

PROBLEM SOLVING
- Mixed Review of Problem Solving,
23, 58
- Multiple Representations, $41,55,57$
- Multi-Step Problems, $8,14,23,46,54$,
55, 58
- Using Alternative Methods, 57
- Real-World Problem Solving Examples,
10, $15,27,36,44,51,65$

\star ASSESSMENT
- Standardized Test Practice Examples,
18,50
- Multiple Choice, $6,13,20,29,39,44,46$,
53
- Short Response/Extended Response,
$7,12,14,20,22,23,30,32,40,47,54,55$,
58,66
- Writing/Open-Ended, $5,12,19,23,28$,
$38,44,52,58$

TECHNOLOGY

At classzone.com:

- Animated Geometry, 1, 3, 14, 21, 25, 43, 52
- @Home Tutor, xxii, 7, 13, 21, 31, 40, 46, 48, 54, 60
- Online Quiz, 8, 14, 22, 32, 41, 47, 56
- Animated Algebra (Algebra Review), 65
- State Test Practice, 23, 58, 69

Unit 1 Points, Lines, and Planes

Reasoning and Proof

Prerequisite Skills 70
2.1 Use Inductive Reasoning 72
2.2 Analyze Conditional Statements 79
2.3 Apply Deductive Reasoning 87
O Investigating Geometry Activity: Logic Puzzles 86
2.4 Use Postulates and Diagrams 96
Mixed Review of Problem Solving 103
2.5 Reason Using Properties from Algebra 105
O Investigating Geometry Activity: Justify a Number Trick 104
2.6 Prove Statements about Segments and Angles 112
Problem Solving Workshop 120
2.7 Prove Angle Pair Relationships 124
Investigating Geometry Activity: Angles and Intersecting Lines 122
Mixed Review of Problem Solving 132
ASSESSMENT
Quizzes 93, 111, 131
Chapter Summary and Review 133
Chapter Test 138
Algebra Review: Simplify Rational and Radical Expressions 139
¿ Standardized Test Preparation and Practice 140
AhimatedGeometry classzone.com

Activities

71, 72, 81, 88, 97, 106, 119, 125

Chapter 2 Highlights

[^0]
\star ASSESSMENT

- Standardized Test Practice Examples, 74, 127
- Multiple Choice, 75, 76, 83, 90, 99, 100, 109, 116, 128
- Short Response/Extended Response, 76, 78, 84, 92, 101, 102, 103, 110, 117, 119, 128, 130, 132, 140
- Writing/Open-Ended, 75, 82, 84, 90, 99, 100, 108, 109, 116, 127, 129, 132

TECHNOLOGY

At classzone.com:

- Animated Geometry, 71, 72, 81, 88, 97, 106, 119, 125
- @Home Tutor, 70, 77, 84, 91, 101, 110, 118, 123, 129, 134
- Online Quiz, 78, 85, 93, 102, 111, 119, 131
- Animated Algebra, 139
- State Test Practice, 103, 132, 143

Unit 1 Points, Lines, and Planes

Prerequisite Skills 144
3.1 Identify Pairs of Lines and Angles 147
O Investigating Geometry Activity: Draw and Interpret Lines 146
3.2 Use Parallel Lines and Transversals 154
Investigating Geometry Activity: Parallel Lines and Angles. 153
3.3 Prove Lines are Parallel 161
Mixed Review of Problem Solving 170
3.4 Find and Use Slopes of Lines 171

- Technology Activity Investigate Slopes 179
3.5 Write and Graph Equations of Lines 180
Problem Solving Workshop 188
3.6 Prove Theorems about Perpendicular Lines 190
Mixed Review of Problem Solving 200
ASSESSMENT
Quizzes 160, 178, 197
Chapter Summary and Review 201
Chapter Test 206
Algebra Review: Graph and Solve Linear Inequalities 207
* Standardized Test Preparation and Practice 208
Cumulative Review, Chapters 1-3 212

Activities
145, 148, 155, 163, 174, 181

Chapter 3 Highlights

TECHNOLOGY

At classzone.com:

- Animated Geometry, 145, 148, 155, 163, 174, 181
- @Home Tutor, 144, 151, 153, 159, 167, 176, 179, 186, 196, 202
- Online Quiz, 152, 160, 169, 178, 187, 197
- Animated Algebra, 207
- State Test Practice, 170, 200, 211

Unit 2 Triangles

Congruent Triangles

Prerequisite Skills 214
4.1 Apply Triangle Sum Properties 217
O Investigating Geometry Activity: Angle Sums in Triangles 216
4.2 Apply Congruence and Triangles 225
Problem Solving Workshop 232
4.3 Prove Triangles Congruent by SSS 234
O Investigating Geometry Activity: Investigate Congruent Figures 233
4.4 Prove Triangles Congruent by SAS and HL 240
Technology Activity Investigate Triangles and Congruence 247
Mixed Review of Problem Solving 248
4.5 Prove Triangles Congruent by ASA and AAS 249
4.6 Use Congruent Triangles 256
4.7 Use Isosceles and Equilateral Triangles 264
4.8 Perform Congruence Transformations 272
O Investigating Geometry Activity: Investigate Slides and Flips 271
Mixed Review of Problem Solving 280
ASSESSMENT
Quizzes 239, 263, 279
Chapter Summary and Review 281
Chapter Test 286
Algebra Review: Solve Inequalities and Absolute Value Equations 287

* Standardized Test Preparation and Practice 288
Animated Geometry Activities 215, 234, 242, 250, 256, 257, 274

Chapter 4 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 248, 280
- Multiple Representations, 232
- Multi-Step Problems, 223, 231, 248, 269, 280
- Using Alternative Methods, 232
- Real-World Problem Solving Examples, 220, 226, 236, 242, 251, 257, 266, 274

\star ASSESSMENT

- Standardized Test Practice Examples, 235, 251
- Multiple Choice, 222, 223, 229, 237, 243, 246, 253, 260, 261, 268, 279, 288
- Short Response/Extended Response, 221, 224, 230, 231, 238, 248, 253, 254, 262, 267, 268, 270, 278, 280
- Writing/Open-Ended, 221, 228, 229, 230, 243, 244, 248, 252, 259, 267, 276, 277, 278, 280

TECHNOLOGY

At classzone.com:

- Animated Geometry, 215, 234, 242, 250, 256, 257, 274
- @Home Tutor, 214, 223, 230, 238, 245, 247, 254, 261, 269, 278, 282
- Online Quiz, 224, 231, 239, 246, 255, 263, 270, 279
- Animated Algebra, 287
- State Test Practice, 248, 280, 291

Unit 2

 TrianglesPrerequisite Skills 292
5.1 Midsegment Theorem and Coordinate Proof 295
O Investigating Geometry Activity: Investigate Segments in Triangles 294
Problem Solving Workshop 302
5.2 Use Perpendicular Bisectors 303
5.3 Use Angle Bisectors of Triangles 310
Mixed Review of Problem Solving 317
5.4 Use Medians and Altitudes 319
O Investigating Geometry Activity: Intersecting Medians 318
[Technology Activity Investigate Points of Concurrency 326
5.5 Use Inequalities in a Triangle 328
5.6 Inequalities in Two Triangles and Indirect Proof 335
Mixed Review of Problem Solving 342
ASSESSMENT
Quizzes 309, 325, 341
Chapter Summary and Review 343
Chapter Test 348
Algebra Review: Use Ratios and Percent of Change 349

* Standardized Test Preparation and Practice 350

Chapter 5 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 317, 342
- Multiple Representations, 302
- Multi-Step Problems, 301, 317, 342
- Using Alternative Methods, 302
- Real-World Problem Solving Examples, 295, 305, 311, 329, 336, 349

\star ASSESSMIENT

- Standardized Test Practice Examples, 320, 329
- Multiple Choice, 299, 307, 314, 322, 331, 332, 339
- Short Response/Extended Response, 300, 308, 315, 317, 323, 324, 332, 333, 334, 339, 340, 342, 350
- Writing/Open-Ended, 298, 306, 313, 317, 322, 331, 338, 342

TECHNOLOGY

At classzone.com:

- Animated Geometry, 293, 296, 304, 312, 321, 330, 336
- @Home Tutor, 292, 300, 308, 315, 324, 327, 333, 340, 344
- Online Quiz, 301, 309, 316, 325, 334, 341
- Animated Algebra, 349
- State Test Practice, 317, 342, 353

Applying Similar Triangles, p. 394

Unit 2 Triangles
Prerequisite Skills 354
6.1 Ratios, Proportions, and the Geometric Mean 356
6.2 Use Proportions to Solve Geometry Problems 364
6.3 Use Similar Polygons 372

- Investigating Geometry Activity: Similar Polygons 371
Mixed Review of Problem Solving 380
6.4 Prove Triangles Similar by AA 381
6.5 Prove Triangles Similar by SSS and SAS 388
6.6 Use Proportionality Theorems 397
Investigating Geometry Activity: Investigate Proportionality 396
Problem Solving Workshop 404
6.7 Perform Similarity Transformations 409
- Investigating Geometry Activity: Dilations 408
Mixed Review of Problem Solving 416
ASSESSMENT
Quizzes 370, 395, 415
Chapter Summary and Review 417
Chapter Test 422
Algebra Review: Solve Quadratic Equations and Simplify Radicals 423
\star Standardized Test Preparation and Practice 424
Cumulative Review, Chapters 1-6 428
Animated Geometry classzone.com Activities 355, 365, 375, 391, 394, 407, 414

Chapter 6 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 380, 416
- Multiple Representations, 363, 378, 404
- Multi-Step Problems, 362, 378, 380, 385, 394, 402, 414, 416
- Using Alternative Methods, 404
- Real-World Problem Solving Examples, 357, 359, 365, 366, 374, 390, 398, 410

* ASSESSMENT

- Standardized Test Practice Examples, 383, 411
- Multiple Choice, 361, 368, 376, 377, 384, 385, 392, 400, 401, 412, 413
- Short Response/Extended Response, 361, 363, 377, 379, 380, 386, 387, 394, 402, 403, 413, 414, 415, 416, 424
- Writing/Open-Ended, 360, 367, 376, 380, 384, 385, 391, 394, 400, 412, 414, 416

TECHNOLOGY

At classzone.com:

- Animated Geometry, 355, 365, 375, 391, 394, 407, 414
- @Home Tutor, 354, 362, 368, 378, 386, 393, 396, 402, 414, 418
- Online Quiz, 363, 370, 379, 387, 395, 403, 415
- Animated Algebra, 423
- State Test Practice, 380, 416, 427

Unit 3

Figures in the Plane
 noman'काया

Right Triangles and Trigonometry

Prerequisite Skills. 430
7.1 Apply the Pythagorean Theorem 433
O Investigating Geometry Activity: Pythagorean Theorem 432
7.2 Use the Converse of the Pythagorean Theorem 441
Investigating Geometry Activity:
Converse of the Pythagorean Theorem 440
7.3 Use Similar Right Triangles 449
O Investigating Geometry Activity: Similar Right Triangles 448
7.4 Special Right Triangles 457
Mixed Review of Problem Solving 465
7.5 Apply the Tangent Ratio 466
7.6 Apply the Sine and Cosine Ratios. 473
Problem Solving Workshop 481
7.7 Solve Right Triangles 483
Mixed Review of Problem Solving 492
ASSESSMENT
Quizzes 447, 464, 489
Chapter Summary and Review. 493
Chapter Test 498
Algebra Review: Graph and Solve Quadratic Equations 499

* Standardized Test Preparation and Practice 500
AlimatedGeometry classzone.com Activities. $431,434,442,450,460,462,475$

Chapter 7 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 465, 492
- Multiple Representations, 439, 480, 481, 488
- Multi-Step Problems, 438, 445, 456, 463, 465, 471, 479, 488, 492
- Using Alternative Methods, 481
- Real-World Problem Solving Examples, 434, 443, 450, 452, 459, 460, 468, 474, 475, 476, 485

\star ASSESSMENT

- Standardized Test Practice Examples, 434, 458
- Multiple Choice, 437, 438, 444, 454, 461, 462, 470, 478, 486, 487, 500
- Short Response/Extended Response, 438, 439, 446, 447, 455, 456, 463, 464, 465, 471, 472, 479, 487, 488, 492
- Writing/Open-Ended, 436, 444, 445, 453, 461, 462, 469, 477, 478, 485, 487, 488

(2) TECHNOLOGY

At classzone.com:

- Animated Geometry, 431, 434, 442, 450, 460, 462, 475
- @Home Tutor, 430, 438, 440, 445, 455, 463, 471, 479, 487, 494
- Online Quiz, 439, 447, 456, 464, 472, 480, 489
- Animated Algebra, 499
- State Test Practice, 465, 492, 503

Unit 3
Figures in the Plane

Quadrilaterals

Prerequisite Skills. 504
8.1 Find Angle Measures in Polygons 507
O Investigating Geometry Activity: Investigate Angle Sums in Polygons 506
8.2 Use Properties of Parallelograms 515
Investigating Geometry Activity: Investigate Parallelograms 514
8.3 Show that a Quadrilateral is a Parallelogram 522
Problem Solving Workshop 530
Mixed Review of Problem Solving 532
8.4 Properties of Rhombuses, Rectangles, and Squares 533
8.5 Use Properties of Trapezoids and Kites. 542

- Investigating Geometry Activity: Midsegment of a Trapezoid 541
8.6 Identify Special Quadrilaterals 552
Mixed Review of Problem Solving 558
ASSESSMENT
Quizzes 521,540, 557
Chapter Summary and Review 559
Chapter Test 564
Algebra Review: Graph Nonlinear Functions 565
¿ Standardized Test Preparation and Practice 566

Activities... 505, 509, 519, 527, 535, 545, 551, 553

Chapter 8 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 532, 558
- Multiple Representations, 513, 530
- Multi-Step Problems, 512, 532, 539, 556, 558
- Using Alternative Methods, 530
- Real-World Problem Solving Examples, 510, 517, 523, 524, 536, 543, 545

\star ASSESSMENT

- Standardized Test Practice Examples, 509, 517, 553
- Multiple Choice, 511, 518, 519, 527, 538, 546, 547, 554, 566
- Short Response/Extended Response, 511, 513, 519, 526, 529, 532, 538, 540, 547, 548, 556, 558
- Writing/Open-Ended, 510, 518, 520, 526, 537, 546, 554, 558

T TECHNOLOGY

At classzone.com:

- Animated Geometry, 505, 509, 519, 527, 535, 545, 551, 553
- @Home Tutor, 504, 512, 514, 520, 528, 539, 541, 548, 556, 560
- Online Quiz, 513, 521, 529, 540, 549, 557
- Animated Algebra, 565
- State Test Practice, 532, 558, 569

Unit 3
Figures in the Plane

Properties of Transformations

Prerequisite Skills 570
9.1 Translate Figures and Use Vectors 572
9.2 Use Properties of Matrices 580
9.3 Perform Reflections 589
O Investigating Geometry Activity: Reflections in the Plane 588
Mixed Review of Problem Solving 597
9.4 Perform Rotations 598
Problem Solving Workshop 606
9.5 Apply Compositions of Transformations 608

- Investigating Geometry Activity: Double Reflections 607
9.6 Identify Symmetry 619
9.7 Identify and Perform Dilations 626
O Investigating Geometry Activity: Investigate Dilations 625
Technology Activity Compositions with Dilations. 633
Mixed Review of Problem Solving 634
ASSESSMENT
Quizzes 587, 615, 632
Chapter Summary and Review. 635
Chapter Test 640
Algebra Review: Multiply Binomials and Use Quadratic Formula 641
\star Standardized Test Preparation and Practice 642
Cumulative Review, Chapters 1-9 646

Chapter 9 Highlights

PROBLEM SOLVING
- Mixed Review of Problem Solving,
597, 634
- Multiple Representations, 606
- Multi-Step Problems, 577, 579, 586, 597,
605, 615, 624, 631, 634
- Using Alternative Methods, 606
- Real-World Problem Solving Examples,
575,583, 591

\star ASSESSMENT

- Standardized Test Practice Examples, 601, 621
- Multiple Choice, 576, 584, 585, 593, 603, 613, 622, 630
- Short Response/Extended Response, 578, 586, 594, 596, 597, 603, 605, 614, 623, 630, 634, 642
- Writing/Open-Ended, 576, 584, 585, 593, 597, 602, 611, 613, 621, 623, 629, 630, 631, 634

TECHNOLOGY

At classzone.com:

- Animated Geometry, 571, 582, 590, 599, 602, 611, 617, 619, 626
- @Home Tutor, 570, 578, 586, 595, 604, 607, 613, 623, 631, 633, 636
- Online Quiz, 579, 587, 596, 605, 615, 624, 632
- Animated Algebra, 641
- State Test Practice, 597, 634, 645

Unit 4 Circles and Measurement

Properties of Circles

Prerequisite Skills 648
10.1 Use Properties of Tangents 651
O Investigating Geometry Activity: Explore Tangent Segments 650
10.2 Find Arc Measures 659
10.3 Apply Properties of Chords 664
10.4 Use Inscribed Angles and Polygons 672
O Investigating Geometry Activity: Explore Inscribed Angles 671
10.5 Apply Other Angle Relationships in Circles 680
Mixed Review of Problem Solving 687
10.6 Find Segment Lengths in Circles 689
Investigating Geometry Activity: Investigate Segment Lengths 688
Problem Solving Workshop 696
10.7 Write and Graph Equations of Circles 699
Mixed Review of Problem Solving 706
ASSESSMENT
Quizzes 670, 686, 705
Chapter Summary and Review 707
Chapter Test 712
Algebra Review: Factor Binomials and Trinomials 713
Ł Standardized Test Preparation and Practice 714
AnimatedGeometry Activities 649, 655, 661, 671, 682, 691, 701

Chapter 10 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 687, 706
- Multiple Representations, 696
- Multi-Step Problems, 669, 687, 706
- Using Alternative Methods, 696
- Real-World Problem Solving Examples, 660, 665, 674, 682, 692, 701

\star ASSESSMENT

- Standardized Test Practice Examples, 673, 690
- Multiple Choice, 656, 662, 667, 677, 683, 693, 702, 703, 714
- Short Response/Extended Response, 657, 662, 663, 678, 684, 685, 687, 694, 695, 704, 706
- Writing/Open-Ended, 655, 661, 667, 668, 669, 676, 678, 683, 684, 687, 692, 702

TECHNOLOGY

At classzone.com:

- Animated Geometry, 649, 655, 661, 671, 682, 691, 701
- @Home Tutor, 648, 657, 663, 669, 677, 685, 688, 694, 703, 704, 708
- Online Quiz, 658, 663, 670, 679, 686, 695, 705
- Animated Algebra, 713
- State Test Practice, 687, 706, 717

Unit 4
Circles and Measurement

Measuring Length and Area

Prerequisite Skills 718
11.1 Areas of Triangles and Parallelograms 720
11.2 Areas of Trapezoids, Rhombuses, and Kites 730
O Investigating Geometry Activity: Areas of Trapezoids and Kites 729
11.3 Perimeter and Area of Similar Figures 737
Problem Solving Workshop 744
Mixed Review of Problem Solving 745
11.4 Circumference and Arc Length 746
11.5 Areas of Circles and Sectors 755
11.6 Areas of Regular Polygons 762
T Spreadsheet Activity Perimeter and Area of Polygons 769
11.7 Use Geometric Probability 771
O Investigating Geometry Activity: Investigate Geometric Probability 770
Mixed Review of Problem Solving 778
ASSESSMENT
Quizzes 743, 761, 777
Chapter Summary and Review 779
Chapter Test 784
Algebra Review: Use Algebraic Models to Solve Problems 785
\star Standardized Test Preparation and Practice 786

Chapter 11 Highlights

[^1]
\star ASSESSMENT

- Standardized Test Practice Examples, 732, 738, 757
- Multiple Choice, 724, 733, 740, 742, 751, 759, 765, 775
- Short Response/Extended Response, 725, 726, 735, 736, 741, 743, 745, 751, 752, $760,766,768,776,778,786$
- Writing/Open-Ended, 723, 724, 733, 734, 740, 743, 745, 749, 758, 765, 774, 778

TECHNOLOGY

At classzone.com:

- Animated Geometry, 719, 720, 739, 749, 759, 765, 771
- @Home Tutor, 718, 725, 735, 742, 751, 760, 767, 769, 776, 780
- Online Quiz, 726, 736, 743, 752, 761, 768, 777
- Animated Algebra, 785
- State Test Practice, 745, 778, 789

Unit 4
Circles and Measurement

Surface Area and Volume of Solids

Prerequisite Skills 790
12.1 Explore Solids 794
O Investigating Geometry Activity: Investigate Solids 792
12.2 Surface Area of Prisms and Cylinders 803
O Investigating Geometry Activity: Investigate Surface Area 802
12.3 Surface Area of Pyramids and Cones 810
Mixed Review of Problem Solving 818
12.4 Volume of Prisms and Cylinders 819
Problem Solving Workshop 826
12.5 Volume of Pyramids and Cones 829
O Investigating Geometry Activity: Investigate the Volume of a Pyramid 828
© Spreadsheet Activity Minimize Surface Area 837
12.6 Surface Area and Volume of Spheres 838
12.7 Explore Similar Solids 847
O Investigating Geometry Activity: Investigate Similar Solids 846
Mixed Review of Problem Solving 855
ASSESSMENT
Quizzes 817, 836, 854
Chapter Summary and Review 856
Chapter Test 861
\star Standardized Test Preparation and Practice 862
Cumulative Review, Chapters 1-12 866
AnimatedGeometry Activities... 791, 795, 805, 821, 825, 833, 841, 852

Chapter 12 Highlights

PROBLEM SOLVING

- Mixed Review of Problem Solving, 818, 855
- Multiple Representations, 826, 835, 853
- Multi-Step Problems, 800, 809, 816, 818, 824, 835, 844, 852, 855
- Using Alternative Methods, 826
- Real-World Problem Solving Examples, 796, 805, 813, 822, 831, 840, 848, 849

\star ASSESSMENT

- Standardized Test Practice Examples, 813, 839
- Multiple Choice, 799, 807, 808, 815, 822, 824, 832, 833, 842, 843, 850, 851, 862
- Short Response/Extended Response, 800, 808, 809, 816, 818, 825, 834, 844, 853, 855
- Writing/Open-Ended, 798, 806, 814, 818, 822, 832, 842, 850, 852

TECHNOLOGY

At classzone.com:

- Animated Geometry, 791, 795, 805, 821, 825, 833, 841, 852
- @Home Tutor, 790, 800, 808, 816, 824, 834, 837, 844, 852, 857
- Online Quiz, 801, 809, 817, 825, 836, 845, 854
- State Test Practice, 818, 855, 865

Contents
 of Student Resources

Skills Review Handbook pages 869-895
Operations with Rational Numbers 869
Simplifying and Evaluating Expressions 870
Properties of Exponents 871
Using the Distributive Property 872
Binomial Products 873
Radical Expressions 874
Solving Linear Equations 875
Solving and Graphing Linear Inequalities 876
Solving Formulas 877
Graphing Points and Lines
Slopes and Intercepts of a Line 879878
Systems of Linear Equations 880
Linear Inequalities 881
Quadratic Equations and Functions 882
Functions 884
Problem Solving with Percents 885
Converting Measurements and Rates 886
Mean, Median, and Mode 887
Displaying Data 888
Sampling and Surveys 890
Counting Methods 891
Probability 893
Problem Solving Plan and Strategies 894Extra Practice for Chapters 1-12pages 896-919
Tables pages 920-925
Symbols 920
Measures 921
Formulas 922
Squares and Square Roots 924
Trigonometric Ratios 925
Postulates and Theorems pages 926-931
Additional Proofs pages 932-938
English-Spanish Glossary pages 939-980Indexpages 981-1000
Credits pages 1001-1003
Worked-Out SolutionsSelected Answerspage SA1

Using Your Textbook

Your textbook contains many resources that you can use for reference when you are studying or doing your homework.

IN EVERY CHAPTER

BIG IDEAS The second page of every chapter includes a list of important ideas developed in the chapter. More information about these ideas appears in the Chapter Summary page at the end of the chapter.
POSTULATES AND THEOREMS The Postulate and Theorem notebook displays present geometric properties you will use in reasoning about figures. You may want to copy these statements into your notes.
KEY CONCEPTS The Key Concept notebook displays present main ideas of the lesson. You may want to copy these ideas into your notes.
VOCABULARY New words and review words are listed in a column on the first page of every lesson. Vocabulary terms appear highlighted and in bold print within the lesson. A list of vocabulary appears in the Chapter Review at the end of each chapter.

MIXED REVIEW Every lesson ends with Mixed Review exercises. These exercises help you review earlier lessons and include exercises to prepare you for the next lesson. Page references with the exercises point you to the lessons being reviewed.

STUDENT RESOURCES AT THE BACK OF THE BOOK

SKILLS REVIEW HANDBOOK Use the Skills Review Handbook topics on pages 869-895 to review material learned in previous courses.
EXTRA PRACTICE Use the Extra Practice on pages 896-919 for more exercises or to review a chapter before a test.
TABLES Refer to the tables on pages 920-925 for information about mathematical symbols, measures, formulas, squares, and trigonometric ratios. POSTULATES AND THEOREMS Refer to pages 926-931 for a complete list of all postulates and theorems presented in the book.
ADDITIONAL PROOFS Refer to pages 932-938 for longer proofs of some of the theorems presented in the book.
GLOSSARY Use the English-Spanish Glossary on pages 939-980 to see definitions in English and Spanish, as well as examples illustrating vocabulary. INDEX Look up items in the alphabetical Index on pages 981-1000 to find where a particular math topic is covered in the book.
WORKED-OUT SOLUTIONS In each lesson, exercises identified by a red circle have complete worked-out solutions starting on page WS1. These provide a model for what a full solution should include.
SELECTED ANSWERS Use the Selected Answers starting on page SA1 to check your work.

Essentials of Geometry
 1.J Identify Points, lnes, and Planes
 1.2 Use Segmentsand congruence
 1.3 Use Midpoint and Distance Formulas
 1.4 Measure and Classify Angles
 1.5 Describe Angle Pair Relationships
 1.6 Classify Polygons
 1.7 Find Perimeter, Circumference, and Area

Before

In previous courses, you learned the following skills, which you'll use in Chapter 1 : finding measures, evaluating expressions, and solving equations.

Prerequisite Skills

VOCABULARY CHECK

Copy and complete the statement.

1. The distance around a rectangle is called its \qquad ? and the distance around a circle is called its \qquad ?.
2. The number of square units covered by a figure is called its \qquad ?

SKILLS AND ALGEBRA CHECK

Evaluate the expression. (Review p. 870 for 1.2, 1.3, 1.7.)
3. $|4-6|$
4. $|3-11|$
5. $|-4+5|$
6. $|-8-10|$

Evaluate the expression when $\boldsymbol{x}=\mathbf{2}$. (Review p. 870 for 1.3-1.6.)
7. $5 x$
8. $20-8 x$
9. $-18+3 x$
10. $-5 x-4+2 x$

Solve the equation. (Review $p .875$ for 1.2-1.7.)
11. $274=-2 z$
12. $8 x+12=60$
13. $2 y-5+7 y=-32$
14. $6 p+11+3 p=-7$
15. $8 m-5=25-2 m$
16. $-2 n+18=5 n-24$

Now

In Chapter 1, you will apply the big ideas listed below and reviewed in the Chapter Summary on page 59. You will also use the key vocabulary listed below.

Big Ideas

(1) Describing geometric figures
(2) Measuring geometric figures
(3) Understanding equality and congruence

Key Vocabulary

- undefined terms, p. 2 point, line, plane
- defined terms, p. 3
- line segment, endpoints, p. 3
- ray, opposite rays, p. 3
- postulate, axiom, p. 9
- congruent segments, p. 11
- midpoint, p. 15
- segment bisector, p. 15
- acute, right, obtuse, straight angles, p. 25
- congruent angles, p. 26
- angle bisector, p. 28
- linear pair, p. 37
- vertical angles, p. 37
- polygon, p. 42
- convex, concave, $p .42$
- n-gon, p. 43
- equilateral, equiangular, regular, p. 43

Why?

Geometric figures can be used to represent real-world situations. For example, you can show a climber's position along a stretched rope by a point on a line segment.

Animated Geometry

The animation illustrated below for Exercise 35 on page 14 helps you answer this question: How far must a climber descend to reach the bottom of a cliff?

Animated Geometry at classzone.com

Other animations for Chapter 1: pages 3, 21, 25, 43, and 52

1.1 Identify Points, Lines, and Planes

Before	You studied basic concepts of geometry.
Now	You will name and sketch geometric figures.
Why	So you can use geometry terms in the real world, as in Ex. 13.

Key Vocabulary

- undefined terms point, line, plane
- collinear points
- coplanar points
- defined terms
- line segment
- endpoints
- ray
- opposite rays
- intersection

In the diagram of a football field, the positions of players are represented by points. The yard lines suggest lines, and the flat surface of the playing field can be thought of as a plane.

In geometry, the words point, line, and plane are undefined terms. These words do not have formal definitions, but there is agreement about what they mean.

TAKE NOTES

When you write new concepts and yellowhighlighted vocabulary in your notebook, be sure to copy all associated diagrams.

KEY CONCEPT

For Your Notebook

Undefined Terms

Point A point has no dimension. It is represented by a dot.

Line A line has one dimension. It is represented by a line with two arrowheads, but it extends without end.

Through any two points, there is exactly one line. You can use any two points on a line to name it.
line ℓ, line $A B(\overleftrightarrow{A B})$, or line $B A(\overleftrightarrow{B A})$

Plane A plane has two dimensions. It is represented by a shape that looks like a floor or a wall, but it extends without end.

Through any three points not on the same line, there is exactly one plane. You can use three points that are not all on the same line to name a plane.

plane M or plane $A B C$

Collinear points are points that lie on the same line. Coplanar points are points that lie in the same plane.

EXAMPLE 1 Name points, lines, and planes

VISUAL REASONING There is a line through points S and Q that is not shown in the diagram. Try to imagine what plane $S P Q$ would look like if it were shown.
a. Give two other names for $\overleftrightarrow{P Q}$ and for plane R.
b. Name three points that are collinear. Name four points that are coplanar.

Solution

a. Other names for $\overleftrightarrow{P Q}$ are $\overleftrightarrow{Q P}$ and line n. Other names for plane R are plane $S V T$ and plane $P T V$.

b. Points S, P, and T lie on the same line, so they are collinear. Points S, P, T, and V lie in the same plane, so they are coplanar.

Animated Geometry at classzone.com

• Guided Practice for Example 1

1. Use the diagram in Example 1. Give two other names for $\overleftrightarrow{S T}$. Name a point that is not coplanar with points Q, S, and T.

DEFINED TERMS In geometry, terms that can be described using known words such as point or line are called defined terms.

KEY CONCEPT
 For Your Notebook

Defined Terms: Segments and Rays

Line $A B$ (written as $\overleftrightarrow{A B}$) and points A and B are
used here to define the terms below. $\quad \underset{A}{\rightleftarrows}$ line

Segment The line segment $A B$, or segment $A B$, segment (written as $\overline{A B}$) consists of the endpoints A and B and all points on $\overleftrightarrow{A B}$ that are between A and B. Note that $\overline{A B}$ can also be named $\overline{B A}$.

Ray The ray $A B$ (written as $\overrightarrow{A B}$) consists of the
 endpoint A and all points on $\overleftrightarrow{A B}$ that lie on the same side of A as B.
Note that $\overrightarrow{A B}$ and $\overrightarrow{B A}$ are different rays.

If point C lies on $\overleftrightarrow{A B}$ between A and B, then $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are opposite rays.

Segments and rays are collinear if they lie on the same line. So, opposite rays are collinear. Lines, segments, and rays are coplanar if they lie in the same plane.

EXAMPLE 2 Name segments, rays, and opposite rays

AVOID ERRORS
In Example 2, $\overrightarrow{J G}$ and \vec{J} have a common endpoint, but are not collinear. So they are not opposite rays.
a. Give another name for $\overline{G H}$.
b. Name all rays with endpoint J. Which of these rays are opposite rays?

Solution

a. Another name for $\overline{G H}$ is $\overline{H G}$.
b. The rays with endpoint J are $\overrightarrow{J E}, \overrightarrow{J G}, \overrightarrow{J F}$, and $\overrightarrow{J H}$. The pairs of opposite rays with endpoint J are $\overrightarrow{J E}$ and $\overrightarrow{J F}$, and $\overrightarrow{J G}$ and $\overrightarrow{J H}$.

Guided Practice for Example 2

Use the diagram in Example 2.

2. Give another name for $\overline{E F}$.
3. Are $\overrightarrow{H J}$ and $\overrightarrow{J H}$ the same ray? Are $\overrightarrow{H J}$ and $\overrightarrow{H G}$ the same ray? Explain.

INTERSECTIONS Two or more geometric figures intersect if they have one or more points in common. The intersection of the figures is the set of points the figures have in common. Some examples of intersections are shown below.

The intersection of two different lines is a point.

The intersection of two different planes is a line.

EXAMPLE 3 Sketch intersections of lines and planes

a. Sketch a plane and a line that is in the plane.
b. Sketch a plane and a line that does not intersect the plane.
c. Sketch a plane and a line that intersects the plane at a point.

Solution

a.

b.

c.

EXAMPREE 4 Sketch intersections of planes

Sketch two planes that intersect in a line.

Solution

STEP 1 Draw a vertical plane. Shade the plane.
STEP 2 Draw a second plane that is horizontal. Shade this plane a different color. Use dashed lines to show where one plane is hidden.
STEP 3 Draw the line of intersection.

Guided Practice for Examples 3 and 4

4. Sketch two different lines that intersect a plane at the same point.

Use the diagram at the right.

5. Name the intersection of $\overleftrightarrow{P Q}$ and line k.
6. Name the intersection of plane A and plane B.
7. Name the intersection of line k and plane A.

1.1 EXERCISES

Skill Pratotuse

1. VOCABULARY Write in words what each of the following symbols means.
a. Q
b. $\overline{M N}$
c. $\overrightarrow{S T}$
d. $\overleftrightarrow{F G}$
2. \star WRITING Compare collinear points and coplanar points. Are collinear points also coplanar? Are coplanar points also collinear? Explain.

EXAMPLE 1
on p .3
for Exs. 3-7

NAIMING POINTS, LINES, AND PLANES In Exercises 3-7, use the diagram.
3. Give two other names for $\overleftrightarrow{W Q}$.
4. Give another name for plane V.
5. Name three points that are collinear. Then name a fourth point that is not collinear with these three points.
6. Name a point that is not coplanar with R, S, and T.
7. \star WRITING Is point W coplanar with points Q and R ? Explain.

EXAMPLES

 3 and 4 on pp. 4-5 for Exs. 14-23NAMING SEGMENTS AND RAYS In Exercises 8-12, use the diagram.
8. What is another name for $\overline{Z Y}$?
9. Name all rays with endpoint V.
10. Name two pairs of opposite rays.
11. Give another name for $\overrightarrow{W V}$.

12. ERROR ANALYSIS A student says that $\overrightarrow{V W}$ and $\overrightarrow{V Z}$ are opposite rays because they have the same endpoint. Describe the error.
13. \star MULTIPLE CHOICE Which statement about the diagram at the right is true?
(A) A, B, and C are collinear.
(B) C, D, E, and G are coplanar.
(C) B lies on $\overrightarrow{G E}$.
(D) $\overrightarrow{E F}$ and $\overrightarrow{E D}$ are opposite rays.

SKETCHING INTERSECTIONS Sketch the figure described.
14. Three lines that lie in a plane and intersect at one point
15. One line that lies in a plane, and one line that does not lie in the plane
16. \star MULTIPLE CHOICE Line $A B$ and line $C D$ intersect at point E. Which of the following are opposite rays?
(A) $\overrightarrow{E C}$ and $\overrightarrow{E D}$
(B) $\overrightarrow{C E}$ and $\overrightarrow{D E}$
(C) $\overrightarrow{A B}$ and $\overrightarrow{B A}$
(D) $\overrightarrow{A E}$ and $\overrightarrow{B E}$

READING DIAGRAMS In Exercises 17-22, use the diagram at the right.
17. Name the intersection of $\overleftrightarrow{P R}$ and $\overleftrightarrow{H R}$.
18. Name the intersection of plane $E F G$ and plane $F G S$.
19.) Name the intersection of plane $P Q S$ and plane $H G S$.
20. Are points P, Q, and F collinear? Are they coplanar?
21. Are points P and G collinear? Are they coplanar?

22. Name three planes that intersect at point E.
23. SKETCHING PLANES Sketch plane J intersecting plane K. Then draw a line ℓ on plane J that intersects plane K at a single point.
24. NAMING RAYS Name 10 different rays in the diagram at the right. Then name 2 pairs of opposite rays.
25. SKETCHING Draw three noncollinear points J, K, and L. Sketch $\overline{J K}$ and add a point M on $\overline{J K}$. Then sketch $\overrightarrow{M L}$.

26. SKETCHING Draw two points P and Q. Then sketch $\overrightarrow{P Q}$. Add a point R on the ray so that Q is between P and R.

REVIEW

ALGEBRA
For help with equations of lines, see p. 878.

ALGEBRA In Exercises 27-32, you are given an equation of a line and a point. Use substitution to determine whether the point is on the line.
27. $y=x-4 ; A(5,1)$
28. $y=x+1$; $A(1,0)$
29. $y=3 x+4$; $A(7,1)$
30. $y=4 x+2$; $A(1,6)$
31. $y=3 x-2 ; A(-1,-5)$
32. $y=-2 x+8 ; A(-4,0)$

GRAPHING Graph the inequality on a number line. Tell whether the graph is a segment, a ray or rays, a point, or a line.
33. $x \leq 3$
34. $x \geq-4$
35. $-7 \leq x \leq 4$
36. $x \geq 5$ or $x \leq-2$
37. $x \geq-1$ or $x \leq 5$
38. $|x| \leq 0$
39. CHALLENGE Tell whether each of the following situations involving three planes is possible. If a situation is possible, make a sketch.
a. None of the three planes intersect.
b. The three planes intersect in one line.
c. The three planes intersect in one point.
d. Two planes do not intersect. The third plane intersects the other two.
e. Exactly two planes intersect. The third plane does not intersect the other two.

Problem Solving

EXAMPLE 3 on p. 4 for Exs. 40-42

EVERYDAY INTERSECTIONS What kind of geometric intersection does the photograph suggest?
40.

41.

42.

43. \star SHORT RESPONSE Explain why a four-legged table may rock from side to side even if the floor is level. Would a three-legged table on the same level floor rock from side to side? Why or why not?
@HomeTutor for problem solving help at classzone.com
44. SURVEYING A surveying instrument is placed on a tripod. The tripod has three legs whose lengths can be adjusted.
a. When the tripod is sitting on a level surface, are the tips of the legs coplanar?
b. Suppose the tripod is used on a sloping surface. The length of each leg is adjusted so that the base of the surveying instrument is level with the horizon. Are the tips of the legs coplanar? Explain.
@HomeTutor for problem solving help at classzone.com

45. MULTI-STEP PROBLEM In a perspective drawing, lines that do not intersect in real life are represented by lines that appear to intersect at a point far away on the horizon. This point is called a vanishing point. The diagram shows a drawing of a house with two vanishing points.

a. Trace the black line segments in the drawing. Using lightly dashed lines, join points A and B to the vanishing point W. Join points E and F to the vanishing point V.
b. Label the intersection of $\overleftrightarrow{E V}$ and $\overleftrightarrow{A W}$ as G. Label the intersection of $\overleftrightarrow{F V}$ and $\overleftrightarrow{B W}$ as H.
c. Using heavy dashed lines, draw the hidden edges of the house: $\overline{A G}, \overline{E G}, \overline{B H}, \overline{F H}$, and $\overline{G H}$.
46. CHALLENGE Each street in a particular town intersects every existing street exactly one time. Only two streets pass through each intersection.

2 streets

3 streets

4 streets
a. A traffic light is needed at each intersection. How many traffic lights are needed if there are 5 streets in the town? 6 streets?
b. Describe a pattern you can use to find the number of additional traffic lights that are needed each time a street is added to the town.

MIXED REVIEW

Find the difference. (p. 869)
47. $-15-9$
48. 6 - 10
49. $-25-(-12)$
50. $13-20$
51. $16-(-4)$

Evaluate the expression. (p. 870)
53. $5 \cdot|-2+1|$
54. $|-8+7|-6$
55. $-7 \cdot|8-10|$

Plot the point in a coordinate plane. (p. 878)
56. $A(2,4)$
57. $B(-3,6)$
58. $E(6,7.5)$

1.2
 Use Segments and Congruence

Before You learned about points, lines, and planes.
Now You will use segment postulates to identify congruent segments.
Why? So you can calculate flight distances, as in Ex. 33.

Key Vocabulary

- postulate, axiom
- coordinate
- distance
- between
- congruent segments

In Geometry, a rule that is accepted without proof is called a postulate or axiom. A rule that can be proved is called a theorem, as you will see later. Postulate 1 shows how to find the distance between two points on a line.

POSTULATE
 For Your Notebook

Postulate 1 Ruler Postulate

The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the coordinate of the point.

The distance between points A and B, written as $A B$, is the absolute value of the difference of the coordinates of A and B.

In the diagrams above, the small numbers in the coordinates x_{1} and x_{2} are called subscripts. The coordinates are read as " x sub one" and " x sub two." The distance between points A and B, or $A B$, is also called the length of $\overline{A B}$.

EXAMPLE 1 Apply the Ruler Postulate

Measure the length of $\overline{\boldsymbol{S T}}$ to the nearest tenth of a centimeter.

Solution

Align one mark of a metric ruler with S. Then estimate the coordinate of T. For example, if you align S with 2, T appears to align with 5.4.

$S T=|5.4-2|=3.4 \quad$ Use Ruler Postulate.

- The length of $\overline{S T}$ is about 3.4 centimeters.

ADDING SEGMENT LENGTHS When three points are collinear, you can say that one point is between the other two.

Point B is between points A and C.

Point E is not between points D and F.

POSTULATE

For Your Notebook

Postulate 2 Segment Addition Postulate

If B is between A and C, then $A B+B C=A C$.
If $A B+B C=A C$, then B is between A and C.

EXAMPLE 2 Apply the Segment Addition Postulate

MAPS The cities shown on the map lie approximately in a straight line. Use the given distances to find the distance from Lubbock, Texas, to St. Louis, Missouri.

Solution

Because Tulsa, Oklahoma, lies between Lubbock and St. Louis, you can apply the Segment Addition Postulate.

$$
L S=L T+T S=380+360=740
$$

- The distance from Lubbock to St. Louis is about 740 miles.

Guided Practice for Examples 1 and 2

Use a ruler to measure the length of the segment to the nearest $\frac{1}{8}$ inch.
1.

2.

In Exercises 3 and 4, use the diagram shown.
3. Use the Segment Addition Postulate to find $X Z$.
4. In the diagram, $W Y=30$. Can you use the Segment Addition Postulate to find the distance between points W and Z ?
 Explain your reasoning.

EXAMPLE 3 Find a length

Use the diagram to find GH.

Solution

Use the Segment Addition Postulate to write an equation. Then solve the equation to find GH.

$$
\begin{aligned}
F H & =F G+G H & & \text { Segment Addition Postulate } \\
36 & =21+G H & & \text { Substitute } 36 \text { for } F H \text { and } 21 \text { for } F G . \\
15 & =G H & & \text { Subtract } 21 \text { from each side. }
\end{aligned}
$$

CONGRUENT SEGMENTS Line segments that have the same length are called congruent segments. In the diagram below, you can say "the length of $\overline{A B}$ is equal to the length of $\overline{C D}$," or you can say " $\overline{A B}$ is congruent to $\overline{C D}$."
The symbol \cong means "is congruent to."

READ DIAGRAMS In the diagram, the red tick marks indicate that $\overline{A B} \cong \overline{C D}$.

REVIEW USING A

 COORDINATE PLANE For help with using a coordinate plane, see p. 878.| \bullet | Lengths are equal. | Segments are congruent. | |
| :---: | :---: | :---: | :---: |
| $\stackrel{B}{\bullet}$ | $A B=C D$ | $\overline{A B} \cong \overline{C D}$ | |
| $\stackrel{\bullet}{C}$ | \bullet | "is equal to" | "is congruent to" |

EXAMPLE 4 Compare segments for congruence

Plot $J(-3,4), K(2,4), L(1,3)$, and $M(1,-2)$ in a coordinate plane.
Then determine whether $\overline{J K}$ and $\overline{L M}$ are congruent.

Solution

To find the length of a horizontal segment, find the absolute value of the difference of the x-coordinates of the endpoints.

$$
J K=|2-(-3)|=5 \quad \text { Use Ruler Postulate. }
$$

To find the length of a vertical segment, find the absolute value of the difference of the y-coordinates of the endpoints.
$L M=|-2-3|=5 \quad$ Use Ruler Postulate.

- $\overline{J K}$ and $\overline{L M}$ have the same length. So, $\overline{J K} \cong \overline{L M}$.

Guided Practice for Examples 3 and 4

5. Use the diagram at the right to find $W X$.
6. Plot the points $A(-2,4), B(3,4), C(0,2)$, and $D(0,-2)$ in a coordinate plane. Then
 determine whether $\overline{A B}$ and $\overline{C D}$ are congruent.

1.2 EXERCISES

SKILL PRACTICE

EXAMPLE 1
on p. 9
for Exs. 3-5

EXAMPLES

2 and 3
on pp. 10-11
for Exs. 6-12

EXAMPLE 4
on p. 11
for Exs. 13-19

In Exercises 1 and 2, use the diagram at the right.

1. VOCABULARY Explain what $\overline{M N}$ means and what MN means.

2. \star WRITING Explain how you can find $P N$ if you know $P Q$ and $Q N$. How can you find $P N$ if you know $M P$ and $M N$?

MEASUREMENT Measure the length of the segment to the nearest tenth of a centimeter.
3. $\stackrel{\bullet}{A}$
4. $\stackrel{\bullet}{C} \stackrel{\bullet}{\square}$
5. $\stackrel{\bullet}{E} \stackrel{\rightharpoonup}{\bullet}$

SEGMENT ADDITION POSTULATE Find the indicated length.
6. Find $M P$.

9. Find $X Y$.

7. Find $R T$.

8. Find $U W$.

11. Find $D E$.

12. ERROR ANALYSIS In the figure at the right, $A C=14$ and $A B=9$. Describe and correct the error made in finding $B C$.

CONGRUENCE In Exercises 13 -15, plot the given points in a coordinate plane. Then determine whether the line segments named are congruent.
13. $A(0,1), B(4,1), C(1,2), D(1,6) ; \overline{A B}$ and $\overline{C D}$
14. $J(-6,-8), K(-6,2), L(-2,-4), M(-6,-4) ; \overline{J K}$ and $\overline{L M}$
15. $R(-200,300), S(200,300), T(300,-200), U(300,100) ; \overline{R S}$ and $\overline{T U}$
xy Algebra Use the number line to find the indicated distance.
16. $J K$
(17.) $J L$
18. $J M$
19. $K M$

20. \star SHORT RESPONSE Use the diagram. Is it possible to use the Segment Addition Postulate to show that $F B>C B$ or that $A C>D B$? Explain.

FINDING LENGTHS In the diagram, points V, W, X, Y, and Z are collinear, $V Z=52, X Z=20$, and $W X=X Y=Y Z$. Find the indicated length.
21. $W X$
22. $V W$
23. $W Y$
24. $V X$
25. $W Z$
26. $V Y$

27. \star MULTIPLE CHOICE Use the diagram. What is the length of $\overline{E G}$?
(A) 1
(B) 4.4
(C) 10
(D) 16

xy Algebra Point S is between R and T on $\overline{R T}$. Use the given information to write an equation in terms of x. Solve the equation. Then find $R S$ and ST.
28. $R S=2 x+10$
$S T=x-4$
$R T=21$
29. $R S=3 x-16$
$S T=4 x-8$
$R T=60$
30. $R S=2 x-8$
$S T=3 x-10$
$R T=17$
31. CHALLENGE In the diagram, $\overline{A B} \cong \overline{B C}, \overline{A C} \cong \overline{C D}$, and $A D=12$. Find the lengths of all the segments in the diagram. Suppose you choose one of the segments at random. What is the probability that the measure of the segment is greater than 3 ? Explain.

Problem Solving

EXAMPLE 2
on p. 10
for Ex. 33
32. SCIENCE The photograph shows an insect called a walkingstick. Use the ruler to estimate the length of the abdomen and the length of the thorax to the nearest $\frac{1}{4}$ inch. About how much longer is the walkingstick's abdomen than its thorax?
@HomeTutor for problem solving help at classzone.com

33. MODEL AIRPLANE In 2003, a remote-controlled model airplane became the first ever to fly nonstop across the Atlantic Ocean. The map shows the airplane's position at three different points during its flight.

| North | America | Atlantic Ocean | | ALeave Cape Spear,
 Newfoundland
 B Approximate position
 after about 1 day |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CLand at Mannin Bay,
 Ireland, after nearly
 38 hours | | | | |

a. Find the total distance the model airplane flew.
b. The model airplane's flight lasted nearly 38 hours. Estimate the airplane's average speed in miles per hour.

[^2]34. \star SHORT RESPONSE The bar graph shows the win-loss record for a lacrosse team over a period of three years.
a. Use the scale to find the length of the yellow bar for each year. What does the length represent?
b. For each year, find the percent of games lost by the team.
c. Explain how you are applying the Segment Addition Postulate when you find information from a stacked bar graph like the one shown.

35. MULTI-STEP PROBLEM A climber uses a rope to descend a vertical cliff. Let A represent the point where the rope is secured at the top of the cliff, let B represent the climber's position, and let C represent the point where the rope is secured at the bottom of the cliff.
a. Model Draw and label a line segment that represents the situation.
b. Calculate If $A C$ is 52 feet and $A B$ is 31 feet, how much farther must the climber descend to reach the bottom of the cliff?

AinimatedGeometry at classzone.com
36. Challenge Four cities lie along a straight highway in this order: City A, City B, City C, and City D. The distance from City A to City B is 5 times the distance from City B to City C. The distance from City A to City D is 2 times the distance from City A to City B. Copy and

	City A	City B	City C	City D
City A		$?$	$?$	$?$
City B	$?$		$?$	$?$
City C	$?$	$?$		10 mi
City D	$?$	$?$	$?$	

Mixed Review

PREVIEW Prepare for Lesson 1.3 in Exs. 37-42.

Simplify the expression. Write your answer in simplest radical form. (p. 874)
37. $\sqrt{45+99}$
38. $\sqrt{14+36}$
39. $\sqrt{42+(-2)^{2}}$

Solve the equation. (p. 875)
40. $4 m+5=7+6 m$
41. $13-4 h=3 h-8$
42. $17+3 x=18 x-28$

Use the diagram to decide whether the statement is true or false. (p. 2)
43. Points A, C, E, and G are coplanar.
44. $\overleftrightarrow{D F}$ and $\overleftrightarrow{A G}$ intersect at point E.
45. $\overrightarrow{A E}$ and $\overrightarrow{E G}$ are opposite rays.

1.3 Use Midpoint and Distance Formulas

Before
You found lengths of segments.
Now You will find lengths of segments in the coordinate plane.
Why? So you can find an unknown length, as in Example 1.

Key Vocabulary

- midpoint
- segment bisector

ACHIVJIY FOLD A SEGMENT BISECTOR

STEP 1

Draw $\overline{A B}$ on a piece of paper.

STEP 2

Fold the paper so that B is on top of A.

Label point M. Compare $A M, M B$, and $A B$.

MIDPOINTS AND BISECTORS The midpoint of a segment is the point that divides the segment into two congruent segments. A segment bisector is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector bisects a segment.

M is the midpoint of $\overline{A B}$.
So, $\overline{A M} \cong \overline{M B}$ and $A M=M B$.

EXAMPLE 1 Find segment lengths

SKATEBOARD In the skateboard design, $\overline{V W}$ bisects $\overline{X Y}$ at point T, and $X T=39.9 \mathrm{~cm}$. Find $X Y$.

Solution

Point T is the midpoint of $\overline{X Y}$. So, $X T=T Y=39.9 \mathrm{~cm}$.

$$
\begin{aligned}
X Y & =X T+T Y & & \text { Segment Addition Postulate } \\
& =39.9+39.9 & & \text { Substitute. } \\
& =79.8 \mathrm{~cm} & & \text { Add. }
\end{aligned}
$$

$\overleftrightarrow{C D}$ is a segment bisector of $\overline{A B}$. So, $\overline{A M} \cong \overline{M B}$ and $A M=M B$.

EXAMPLE 2 Use algebra with segment lengths

REVIEW ALGEBRA For help with solving equations, see p. 875.
xy ALGEBRA Point M is the midpoint of $\overline{V W}$. Find the length of $\overline{V M}$.

Solution

STEP 1 Write and solve an equation. Use the fact that that $V M=M W$.

$$
\begin{aligned}
V M & =M W & & \text { Write equation. } \\
4 x-1 & =3 x+3 & & \text { Substitute. } \\
x-1 & =3 & & \text { Subtract } 3 x \text { from each side. } \\
x & =4 & & \text { Add } 1 \text { to each side. }
\end{aligned}
$$

STEP 2 Evaluate the expression for $V M$ when $x=4$.

$$
V M=4 x-1=4(4)-1=15
$$

$>$ So, the length of $\overline{V M}$ is 15 .
CHECK Because $V M=M W$, the length of $\overline{M W}$ should be 15 . If you evaluate the expression for $M W$, you should find that $M W=15$.
$M W=3 x+3=3(4)+3=15 \checkmark$

GUIDED PRACTICE for Examples 1 and 2

READ DIRECTIONS Always read direction lines carefully. Notice that this direction line has two parts.

In Exercises 1 and 2, identify the segment bisector of $\overline{P Q}$. Then find $P Q$.

1.

2.

COORDINATE PLANE You can use the coordinates of the endpoints of a segment to find the coordinates of the midpoint.

KEY CONCEPT
 For Your Notebook

The Midpoint Formula

The coordinates of the midpoint of a segment are the averages of the x-coordinates and of the y-coordinates of the endpoints.

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the midpoint M of $\overline{A B}$ has coordinates

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \text {. }
$$

Example 3 Use the Midpoint Formula

a. FIND MIDPOINT The endpoints of $\overline{R S}$ are $R(1,-3)$ and $S(4,2)$. Find the coordinates of the midpoint M.
b. FIND ENDPOINT The midpoint of $\overline{J K}$ is $M(2,1)$. One endpoint is $J(1,4)$. Find the coordinates of endpoint K.

Solution

a. FIND MIIDPOINT Use the Midpoint Formula.

$$
M\left(\frac{1+4}{2}, \frac{-3+2}{2}\right)=M\left(\frac{5}{2},-\frac{1}{2}\right)
$$

- The coordinates of the midpoint M are $\left(\frac{5}{2},-\frac{1}{2}\right)$.
b. FIND ENDPOINT Let (x, y) be the coordinates of endpoint K. Use the Midpoint Formula.

STEP 1 Find x. STEP 2 Find y.

$$
\begin{array}{rlrl}
\frac{1+x}{2} & =2 & \frac{4+y}{2} & =1 \\
1+x & =4 & 4+y & =2 \\
x & =3 & y & =-2
\end{array}
$$

CLEAR FRACTIONS Multiply each side of the equation by the denominator to clear the fraction.

READ DIAGRAMS The red mark at one corner of the triangle shown indicates a right triangle.

GUIDED PRACTICE for Example 3

3. The endpoints of $\overline{A B}$ are $A(1,2)$ and $B(7,8)$. Find the coordinates of the midpoint M.
4. The midpoint of $\overline{V W}$ is $M(-1,-2)$. One endpoint is $W(4,4)$. Find the coordinates of endpoint V.

DISTANCE FORMULA The Distance Formula is a formula for computing the distance between two points in a coordinate plane.

KEY CONCEPT
 For Your Notebook

The Distance Formula

If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between A and B is

$$
A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

The Distance Formula is based on the Pythagorean Theorem, which you will see again when you work with right triangles in Chapter 7.

$$
\begin{gathered}
\text { Distance Formula } \\
(A B)^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
\end{gathered}
$$

Pythagorean Theorem
$c^{2}=a^{2}+b^{2}$

EXAMPLE 4 Standardized Test Practice

ELIMINATE CHOICES
Drawing a diagram can help you eliminate choices. You can see that choice A is not large enough to be $R S$.

READ SYMBOLS
The symbol \approx means "is approximately equal to."

What is the approximate length of $\overline{R S}$ with endpoints $R(2,3)$ and $S(4,-1)$?
(A) 1.4 units
(B) 4.0 units
(C) 4.5 units
(D) 6 units

Solution

Use the Distance Formula. You may find it helpful to draw a diagram.

$$
\begin{array}{rlrl}
R S & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{[(4-2)]^{2}+[(-1)-3]^{2}} & & \text { Substitute. } \\
& =\sqrt{(2)^{2}+(-4)^{2}} & & \text { Subtract. } \\
& =\sqrt{4+16} & & \text { Evaluate powers. } \\
& =\sqrt{20} & & \text { Add. } \\
& \approx 4.47 & & \begin{array}{l}
\text { Use a calculator to approximate }
\end{array} \\
& & \text { the square root. }
\end{array}
$$

- The correct answer is C. (A) (B) (D)

Guided Practice

5. In Example 4, does it matter which ordered pair you choose to substitute for $\left(x_{1}, y_{1}\right)$ and which ordered pair you choose to substitute for $\left(x_{2}, y_{2}\right)$? Explain.
6. What is the approximate length of $\overline{A B}$, with endpoints $A(-3,2)$ and $B(1,-4)$?
(A) 6.1 units
(B) 7.2 units
(C) 8.5 units
(D) 10.0 units

1.3 EXERCISES

$\star=$ STANDARDIZED TEST PRACTICE Exs. 2, 23, 34, 41, 42, and 53

SKILL PRACTICE

EXAMPLE 1
on p. 15
for Exs. 3-10

EXAMPLE 2
on p. 16
for Exs. 11-16

EXAMPLE 3 on p. 17
for Exs. 17-30

1. VOCABULARY Copy and complete: To find the length of $\overline{A B}$, with endpoints $A(-7,5)$ and $B(4,-6)$, you can use the \qquad .
2. \star WRITING Explain what it means to bisect a segment. Why is it impossible to bisect a line?

FINDING LENGTHS Line ℓ bisects the segment. Find the indicated length.
3. Find $R T$ if $R S=5 \frac{1}{8} \mathrm{in}$.
4. Find $U W$ if $V W=\frac{5}{8} \mathrm{in}$.
5. Find $E G$ if $E F=13 \mathrm{~cm}$.

6. Find $B C$ if $A C=19 \mathrm{~cm}$.
7. Find $Q R$ if $P R=9 \frac{1}{2}$ in.
8. Find $L M$ if $L N=137 \mathrm{~mm}$.

9. SEGIMENT BISECTOR Line $R S$ bisects $\overline{P Q}$ at point R. Find $R Q$ if $P Q=4 \frac{3}{4}$ inches.
10. SEGIMENT BISECTOR Point T bisects $\overline{U V}$. Find $U V$ if $U T=2 \frac{7}{8}$ inches.
xy ALGEBRA In each diagram, M is the midpoint of the segment. Find the indicated length.
11. Find $A M$.

14. Find $P R$.

12. Find $E M$.

15. Find $S U$.

13. Find $J M$.

16. Find $X Z$.

FINDING MIIDPOINTS Find the coordinates of the midpoint of the segment with the given endpoints.
17. $C(3,5)$ and $D(7,5)$
18. $E(0,4)$ and $F(4,3)$
19. $G(-4,4)$ and $H(6,4)$
20. $J(-7,-5)$ and $K(-3,7)$
21. $P(-8,-7)$ and $Q(11,5)$
22. $S(-3,3)$ and $T(-8,6)$
23. \star WRITING Develop a formula for finding the midpoint of a segment with endpoints $A(0,0)$ and $B(m, n)$. Explain your thinking.

EXAMPLE 4 on p. 18 for Exs. 31-34
24. ERROR ANALYSIS Describe the error made in finding the coordinates of the midpoint of a segment with endpoints $S(8,3)$ and $T(2,-1)$.

$$
\left(\frac{8-2}{2}, \frac{3-(-1)}{2}\right)=(3,2)
$$

FINDING ENDPOINTS Use the given endpoint R and midpoint M of $\overline{R S}$ to find the coordinates of the other endpoint S.
25. $R(3,0), M(0,5)$
26. $R(5,1), M(1,4)$
27. $R(6,-2), M(5,3)$
28. $R(-7,11), M(2,1)$
29. $R(4,-6), M(-7,8)$
30. $R(-4,-6), M(3,-4)$

DISTANCE FORMULA Find the length of the segment. Round to the nearest tenth of a unit.
31.

32.

33.

34. \star MULTIPLE CHOICE The endpoints of $\overline{M N}$ are $M(-3,-9)$ and $N(4,8)$. What is the approximate length of $\overline{M N}$?
(A) 1.4 units
(B) 7.2 units
(C) 13 units
(D) 18.4 units

NUMBER LINE Find the length of the segment. Then find the coordinate of the midpoint of the segment.
(35.)

36.

37.

38.

39.

40.

41. \star MULTIPLE CHOICE The endpoints of $\overline{L F}$ are $L(-2,2)$ and $F(3,1)$. The endpoints of $\overline{J R}$ are $J(1,-1)$ and $R(2,-3)$. What is the approximate difference in the lengths of the two segments?
(A) 2.24
(B) 2.86
(C) 5.10
(D) 7.96
42. \star SHORT RESPONSE One endpoint of $\overline{P Q}$ is $P(-2,4)$. The midpoint of $\overline{P Q}$ is $M(1,0)$. Explain how to find $P Q$.

COMPARING LENGTHS The endpoints of two segments are given. Find each segment length. Tell whether the segments are congruent.
43. $\overline{A B}: A(0,2), B(-3,8)$
44. $\overline{E F}: E(1,4), F(5,1)$
$\overline{G H}: G(-3,1), H(1,6)$
45. $\overline{J K}: J(-4,0), K(4,8)$
$\overline{L M}: L(-4,2), M(3,-7)$
46. Xy Algebra Points S, T, and P lie on a number line. Their coordinates are 0,1 , and x, respectively. Given $S P=P T$, what is the value of x ?
47. ChALLENGE M is the midpoint of $\overline{J K}, J M=\frac{x}{8}$, and $J K=\frac{3 x}{4}-6$. Find $M K$.
on p. WS1

PROBLEM SOLVING

EXAMPLE 1

on p. 15
for Ex. 48
48. WINDMILL In the photograph of a windmill, $\overline{S T}$ bisects $\overline{Q R}$ at point M. The length of $\overline{Q M}$ is $18 \frac{1}{2}$ feet. Find $Q R$ and $M R$.

@HomeTutor for problem solving help at classzone.com

49. DISTANCES A house and a school are 5.7 kilometers apart on the same straight road. The library is on the same road, halfway between the house and the school. Draw a sketch to represent this situation. Mark the locations of the house, school, and library. How far is the library from the house?

HomeTutor for problem solving help at classzone.com

ARCHAEOLOGY The points on the diagram show the positions of objects at an underwater archaeological site. Use the diagram for Exercises 50 and 51.

51. Which two objects are closest to each other? Which two are farthest apart?

AnimatedGeometry at classzone.com
52. WATER POLO The diagram shows the positions of three players during part of a water polo match. Player A throws the ball to Player B, who then throws it to Player C. How far did Player A throw the ball? How far did Player B throw the ball? How far would Player A have thrown the ball if he had thrown it directly to Player C ? Round all answers to the nearest tenth of a meter.

53. \star EXTENDED RESPONSE As shown, a path goes around a triangular park.
a. Find the distance around the park to the nearest yard.
b. A new path and a bridge are constructed from point Q to the midpoint M of $\overline{P R}$. Find $Q M$ to the nearest yard.
c. A man jogs from P to Q to M to R to Q and back to P at an average speed of 150 yards per minute. About how many minutes does it take? Explain.

54. ChALLENGE $\overline{A B}$ bisects $\overline{C D}$ at point $M, \overline{C D}$ bisects $\overline{A B}$ at point M, and $A B=4 \cdot C M$. Describe the relationship between $A M$ and $C D$.

MIXED REVIEW

The graph shows data about the number of children in the families of students in a math class. (p. 888)
55. What percent of the students in the class belong to families with two or more children?
56. If there are 25 students in the class, how many students belong to families with two children?

Solve the equation. (p. 875)
57. $3 x+12+x=20$
58. $9 x+2 x+6-x=10$
59. $5 x-22-7 x+2=40$

In Exercises 60-64, use the diagram at the right. (p. 2)
60. Name all rays with endpoint B.
61. Name all the rays that contain point C.
62. Name a pair of opposite rays.
63. Name the intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$.
64. Name the intersection of $\overleftrightarrow{B C}$ and plane P.

QUIZ for Lessons 1.1-1.3

1. Sketch two lines that intersect the same plane at two different points. The lines intersect each other at a point not in the plane. (p. 2)

In the diagram of collinear points, $A E=26, A D=15$, and $A B=B C=C D$. Find the indicated length. (p.9)

2. $D E$
3. $A B$
4. $A C$
5. $B D$
6. $C E$
7. $B E$
8. The endpoints of $\overline{R S}$ are $R(-2,-1)$ and $S(2,3)$. Find the coordinates of the midpoint of $\overline{R S}$. Then find the distance between R and S. (p. 15)

Lessons 1.1-1.3

1. MULTI-STEP PRObLEM The diagram shows existing roads ($\overleftrightarrow{B D}$ and $\overleftrightarrow{D E}$) and a new road $(\overline{C E})$ under construction.

a. If you drive from point B to point E on existing roads, how far do you travel?
b. If you use the new road as you drive from B to E, about how far do you travel? Round to the nearest tenth of a mile if necessary.
c. About how much shorter is the trip from B to E if you use the new road?
2. GRIDDED ANSWER Point M is the midpoint of $\overline{P Q}$. If $P M=23 x+5$ and $M Q=25 x-4$, find the length of $\overline{P Q}$.
3. GRIDDED ANSWER You are hiking on a trail that lies along a straight railroad track. The total length of the trail is 5.4 kilometers. You have been hiking for 45 minutes at an average speed of 2.4 kilometers per hour. How much farther (in kilometers) do you need to hike to reach the end of the trail?
4. SHORT RESPONSE The diagram below shows the frame for a wall. $\overline{F H}$ represents a vertical board, and $\overline{E G}$ represents a brace. If $F G=143 \mathrm{~cm}$, does the brace bisect $\overline{F H}$? If not, how long should $\overline{F G}$ be so that the brace does bisect $\overline{F H}$? Explain.

5. SHORT RESPONSE Point E is the midpoint of $\overline{A B}$ and the midpoint of $\overline{C D}$. The endpoints of $\overline{A B}$ are $A(-4,5)$ and $B(6,-5)$. The coordinates of point C are $(2,8)$. Find the coordinates of point D. Explain how you got your answer.
6. OPEN-ENDED The distance around a figure is its perimeter. Choose four points in a coordinate plane that can be connected to form a rectangle with a perimeter of 16 units. Then choose four other points and draw a different rectangle that has a perimeter of 16 units. Show how you determined that each rectangle has a perimeter of 16 units.
7. SHORT RESPONSE Use the diagram of a box. What are all the names that can be used to describe the plane that contains points B, F, and C ? Name the intersection of planes $A B C$ and BFE. Explain.

8. EXTENDED RESPONSE Jill is a salesperson who needs to visit towns A, B, and C. On the map below, $A B=18.7 \mathrm{~km}$ and $B C=2 A B$. Assume Jill travels along the road shown.

a. Find the distance Jill travels if she starts at Town A, visits Towns B and C, and then returns to Town A.
b. About how much time does Jill spend driving if her average driving speed is 70 kilometers per hour?
c. Jill needs to spend 2.5 hours in each town. Can she visit all three towns and return to Town A in an 8 hour workday? Explain.

1.4 Measure and Classify Angles

Before
You named and measured line segments.
Now You will name, measure, and classify angles.
Why? So you can identify congruent angles, as in Example 4.

Key Vocabulary

- angle acute, right, obtuse, straight
- sides, vertex of an angle
- measure of an angle
- congruent angles
- angle bisector

An angle consists of two different rays with the same endpoint. The rays are the sides of the angle. The endpoint is the vertex of the angle.
The angle with sides $\overrightarrow{A B}$ and $\overrightarrow{A C}$ can be named $\angle B A C$, $\angle C A B$, or $\angle A$. Point A is the vertex of the angle.

EXAMPLE 1 Name angles

Name the three angles in the diagram.

$$
\begin{aligned}
& \angle W X Y \text {, or } \angle Y X W \\
& \angle Y X Z \text {, or } \angle Z X Y \\
& \angle W X Z \text {, or } \angle Z X W
\end{aligned}
$$

You should not name any of these angles $\angle X$ because all three angles have X as their vertex.

MEASURING ANGLES A protractor can be used to approximate the measure of an angle. An angle is measured in units called degrees $\left({ }^{\circ}\right)$. For instance, the measure of $\angle W X Z$ in Example 1 above is 32°. You can write this statement in two ways.

Words The measure of $\angle W X Z$ is 32°.
Symbols $m \angle W X Z=32^{\circ}$

POSTULATE

Postulate 3 Protractor Postulate

Consider $\overrightarrow{O B}$ and a point A on one side of $\overrightarrow{O B}$.
The rays of the form $\overrightarrow{O A}$ can be matched one to one with the real numbers from 0 to 180.

The measure of $\angle A O B$ is equal to the absolute value of the difference between the real numbers for $\overrightarrow{O A}$ and $\overrightarrow{O B}$.

CLASSIFYING ANGLES Angles can be classified as acute, right, obtuse, and straight, as shown below.

READ DIAGRAMS

 A red square inside an angle indicates that the angle is a right angle.

EXAMPLE 2 Measure and classify angles

Use the diagram to find the measure of the indicated angle. Then classify the angle.
a. $\angle K H J$
b. $\angle \mathrm{GHK}$
c. $\angle G H J$
d. $\angle G H L$

Solution

A protractor has an inner and an outer scale. When you measure an angle, check to see which scale to use.

a. $\overrightarrow{H J}$ is lined up with the 0° on the inner scale of the protractor. $\overrightarrow{H K}$ passes through 55° on the inner scale. So, $m \angle K H J=55^{\circ}$. It is an acute angle.
b. $\overrightarrow{H G}$ is lined up with the 0° on the outer scale, and $\overrightarrow{H K}$ passes through 125° on the outer scale. So, $m \angle G H K=125^{\circ}$. It is an obtuse angle.
c. $m \angle G H J=180^{\circ}$. It is a straight angle.
d. $m \angle G H L=90^{\circ}$. It is a right angle.

Animated Geometry at classzone.com

GUIDED Practice for Examples 1 and 2

1. Name all the angles in the diagram at the right. Which angle is a right angle?
2. Draw a pair of opposite rays. What type of angle do the rays form?

READ DIAGRAMS A point is in the interior of an angle if it is between points that lie on each side of the angle.

POSTULATE

For Your Notebook

Postulate 4 Angle Addition Postulate

Words If P is in the interior of $\angle R S T$, then the measure of $\angle R S T$ is equal to the sum of the measures of $\angle R S P$ and $\angle P S T$.

Symbols If P is in the interior of $\angle R S T$, then $m \angle R S T=m \angle R S P+m \angle P S T$.

EXAMPLE 3 Find angle measures

xy ALGEBRA Given that $m \angle L K N=145^{\circ}$, find $m \angle L K M$ and $m \angle M K N$.

Solution

STEP 1 Write and solve an equation to find the value of x.

$$
\begin{aligned}
m \angle L K N & =m \angle L K M+m \angle M K N & & \text { Angle Addition Postulate } \\
145^{\circ} & =(2 x+10)^{\circ}+(4 x-3)^{\circ} & & \text { Substitute angle measures. } \\
145 & =6 x+7 & & \text { Combine like terms. } \\
138 & =6 x & & \text { Subtract } 7 \text { from each side. } \\
23 & =x & & \text { Divide each side by } 6 .
\end{aligned}
$$

STEP 2 Evaluate the given expressions when $x=23$.

$$
\begin{aligned}
& m \angle L K M=(2 x+10)^{\circ}=(2 \cdot 23+10)^{\circ}=56^{\circ} \\
& m \angle M K N=(4 x-3)^{\circ}=(4 \cdot 23-3)^{\circ}=89^{\circ}
\end{aligned}
$$

So, $m \angle L K M=56^{\circ}$ and $m \angle M K N=89^{\circ}$.

Guided Practice for Example 3

Find the indicated angle measures.

3. Given that $\angle K L M$ is a straight angle, find $m \angle K L N$ and $m \angle N L M$.

4. Given that $\angle E F G$ is a right angle, find $m \angle E F H$ and $m \angle H F G$.

CONGRUENT ANGLES Two angles are congruent angles if they have the same measure. In the diagram below, you can say that "the measure of angle A is equal to the measure of angle B, ," or you can say "angle A is congruent to angle B."

READ DIAGRAMS Matching arcs are used to show that angles are congruent. If more than one pair of angles are congruent, double arcs are used, as in
Example 4 on page 27.

Angle measures are equal.

Angles are congruent.

EXAMPLE 4 Identify congruent angles

TRAPEZE The photograph shows some of the angles formed by the ropes in a trapeze apparatus. Identify the congruent angles.
If $m \angle D E G=157^{\circ}$, what is $m \angle G K L$?

Solution

There are two pairs of congruent angles:
$\angle D E F \cong \angle J K L$ and $\angle D E G \cong \angle G K L$.
Because $\angle D E G \cong \angle G K L, m \angle D E G=m \angle G K L$. So, $m \angle G K L=157^{\circ}$.

GUIDED PRACTICE for Example 4

Use the diagram shown at the right.

5. Identify all pairs of congruent angles in the diagram.
6. In the diagram, $m \angle P Q R=130^{\circ}, m \angle Q R S=84^{\circ}$, and $m \angle T S R=121^{\circ}$. Find the other angle measures
 in the diagram.

ACTIVIJY FOLD AN ANGIE BISECTOR

STEP 1

Use a straightedge to draw and label an acute angle, $\angle A B C$.

STEP 2

Fold the paper so that $\overrightarrow{B C}$ is on top of $\overrightarrow{B A}$.

STEP 3

Draw a point D on the fold inside $\angle A B C$. Then measure $\angle A B D, \angle D B C$, and $\angle A B C$. What do you observe?

An angle bisector is a ray that divides an angle into two angles that are congruent. In the activity on page $27, \overrightarrow{B D}$ bisects $\angle A B C$. So, $\angle A B D \cong \angle D B C$ and $m \angle A B D=m \angle D B C$.

EXAMPLE 5 Double an angle measure

In the diagram at the right, $\overrightarrow{Y W}$ bisects $\angle X Y Z$, and $m \angle X Y W=18^{\circ}$. Find $m \angle X Y Z$.

Solution

By the Angle Addition Postulate, $m \angle X Y Z=m \angle X Y W+m \angle W Y Z$. Because $\overrightarrow{Y W}$ bisects $\angle X Y Z$, you know that $\angle X Y W \cong \angle W Y Z$.

So, $m \angle X Y W=m \angle W Y Z$, and you can write

$$
m \angle X Y Z=m \angle X Y W+m \angle W Y Z=18^{\circ}+18^{\circ}=36^{\circ} .
$$

Guided Practice

for Example 5
7. Angle $M N P$ is a straight angle, and $\overrightarrow{N Q}$ bisects $\angle M N P$. Draw $\angle M N P$ and $\overrightarrow{N Q}$. Use arcs to mark the congruent angles in your diagram, and give the angle measures of these congruent angles.

1.4 EXERCISES
 $\begin{array}{r:r}\text { HOMEWORK } & \text { = wORKED-OUT SOLUTIONS } \\ \text { KEY } & \\ \text { on p. WS1 for Exs. 15, 23, and } 53\end{array}$
 * $=$ STANDARDIZED TEST PRACTICE
 Exs. 2, 21, 27, 43, and 62

Skill Practice

1. VOCABULARY Sketch an example of each of the following types of angles: acute, obtuse, right, and straight.
2. \star WRITING Explain how to find the measure of $\angle P Q R$, shown at the right.

EXAMPLE 1
on p. 24
for Exs. 3-6

NAMIING ANGLES AND ANGLE PARTS In Exercises 3-5, write three names for the angle shown. Then name the vertex and sides of the angle.
3.

4.

5.

EXAMPLE 2
on p. 25
for Exs. 7-21

EXAMPLE 3
on p. 26
for Exs. 22-27
6. NAMING ANGLES Name three different angles in the diagram at the right.

CLASSIFYING ANGLES Classify the angle with the given measure as acute, obtuse, right, or straight.
7. $m \angle W=180^{\circ}$
8. $m \angle X=30^{\circ}$
9. $m \angle Y=90^{\circ}$
10. $m \angle Z=95^{\circ}$

MEASURING ANGLES Trace the diagram and extend the rays. Use a protractor to find the measure of the given angle. Then classify the angle as acute, obtuse, right, or straight.
11. $\angle J F L$
12. $\angle G F H$
13. $\angle G F K$
14. $\angle G F L$

NAIMING AND CLASSIFYING Give another name for the angle in the diagram below. Tell whether the angle appears to be acute, obtuse, right, or straight.
15. $\angle A C B$
16. $\angle A B C$
17. $\angle B F D$
18. $\angle A E C$
19. $\angle B D C$
20. $\angle B E C$

21. \star MULTIPLE CHOICE Which is a correct name for the obtuse angle in the diagram?
(A) $\angle A C B$
(B) $\angle A C D$
(C) $\angle B C D$
(D) $\angle C$

ANGLE ADDITION POSTULATE Find the indicated angle measure.
22. $m \angle Q S T=$?
23.) $m \angle A D C=$?
24. $m \angle N P M=$?

xy ALGEBRA Use the given information to find the indicated angle measure.
25. Given $m \angle W X Z=80^{\circ}$, find $m \angle Y X Z$.
26. Given $m \angle F J H=168^{\circ}$, find $m \angle F J G$.

27. \star MULTIPLE CHOICE In the diagram, the measure of $\angle X Y Z$ is 140°. What is the value of x ?
(A) 27
(B) 33
(C) 67
(D) 73

28. CONGRUENT ANGLES In the photograph below, $m \angle A E D=34^{\circ}$ and $m \angle E A D=112^{\circ}$. Identify the congruent angles in the diagram. Then find $m \angle B D C$ and $m \angle A D B$.

ANGLE BISECTORS Given that $\overrightarrow{W Z}$ bisects $\angle X W Y$, find the two angle measures not given in the diagram.
29.

30.

31.

32. ERROR ANALYSIS $\overrightarrow{K M}$ bisects $\angle J K L$ and $m \angle J K M=30^{\circ}$. Describe and correct the error made in stating that $m \angle J K L=15^{\circ}$. Draw a sketch to support your answer.

FINDING ANGLE MEASURES Find the indicated angle measure.
33. a°
34. b°
35. c°
36. d°
37. e°
38. f°

39. ERROR ANALYSIS A student states that $\overrightarrow{A D}$ can bisect $\angle A G C$. Describe and correct the student's error. Draw a sketch to support your answer.

Xy ALGEBRA In each diagram, $\overrightarrow{B D}$ bisects $\angle A B C$. Find $m \angle A B C$.
40.

41.

42.

43. \star SHORT RESPONSE You are measuring $\angle P Q R$ with a protractor. When you line up $\overrightarrow{Q R}$ with the 20° mark, $\overrightarrow{Q P}$ lines up with the 80° mark. Then you move the protractor so that $\overrightarrow{Q R}$ lines up with the 15° mark. What mark does $\overrightarrow{Q P}$ line up with? Explain.
$x y$ Algebra Plot the points in a coordinate plane and draw $\angle A B C$.
Classify the angle. Then give the coordinates of a point that lies in the interior of the angle.
44. $A(3,3), B(0,0), C(3,0)$
45. $A(-5,4), B(1,4), C(-2,-2)$
46. $A(-5,2), B(-2,-2), C(4,-3)$
47. $A(-3,-1), B(2,1), C(6,-2)$
48. XI Algebra Let $(2 x-12)^{\circ}$ represent the measure of an acute angle. What are the possible values of x ?
49. CHALLENGE $\overrightarrow{S Q}$ bisects $\angle R S T, \overrightarrow{S P}$ bisects $\angle R S Q$, and $\overrightarrow{S V}$ bisects $\angle R S P$. The measure of $\angle V S P$ is 17°. Find $m \angle T S Q$. Explain.
50. FINDING MEASURES In the diagram, $m \angle A E B=\frac{1}{2} \cdot m \angle C E D$, and $\angle A E D$ is a straight angle. Find $m \angle A E B$ and $m \angle C E D$.

PRoblem Solving

EXAMPLES
4 and 5
on pp. 27-28
for Exs. 53-55
51. SCULPTURE In the sculpture shown in the photograph, suppose the measure of $\angle L M N$ is 79° and the measure of $\angle P M N$ is 47°. What is the measure of $\angle L M P$?
@HomeTutor for problem solving help at classzone.com

52. MAP The map shows the intersection of three roads. Malcom Way intersects Sydney Street at an angle of 162°. Park Road intersects Sydney Street at an angle of 87°. Find the angle at which Malcom Way intersects Park Road.

@HomeTutor for problem solving help at classzone.com

CONSTRUCTION In Exercises 53-55, use the photograph of a roof truss.
53. In the roof truss, $\overrightarrow{B G}$ bisects $\angle A B C$ and $\angle D E F$, $m \angle A B C=112^{\circ}$, and $\angle A B C \cong \angle D E F$. Find the measure of the following angles.
a. $m \angle D E F$
b. $m \angle A B G$
c. $m \angle C B G$
d. $m \angle D E G$
54. In the roof truss, $\overrightarrow{G B}$ bisects $\angle D G F$. Find $m \angle D G E$ and $m \angle F G E$.
55. Name an example of each of the following types of angles: acute, obtuse, right, and straight.

GEOGRAPHY For the given location on the map, estimate the measure of $\angle P S L$, where P is on the Prime Meridian (0° longitude), S is the South Pole, and L is the location of the indicated research station.
56. Macquarie Island
57. Dumont d’Urville
58. McMurdo
59. Mawson
60. Syowa
61. Vostok

62. \star EXTENDED RESPONSE In the flag shown, $\angle A F E$ is a straight angle and $\overrightarrow{F C}$ bisects $\angle A F E$ and $\angle B F D$.
a. Which angles are acute? obtuse? right?
b. Identify the congruent angles.
c. If $m \angle A F B=26^{\circ}$, find $m \angle D F E$, $m \angle B F C, m \angle C F D, m \angle A F C, m \angle A F D$, and $m \angle B F D$. Explain.

63. CHALLENGE Create a set of data that could be represented by the circle graph at the right. Explain your reasoning.

Mixed Review

PREVIEW Prepare for Lesson 1.5 in Ex. 64.
64. You and a friend go out to dinner and each pay for your own meal. The total cost of the two meals is $\$ 25$. Your meal cost $\$ 4$ more than your friend's meal. How much does each meal cost? (p. 894)

Graph the inequality on a number line. Tell whether the graph is a segment, a ray or rays, a point, or a line. (p. 2)
65. $x \leq-8$
66. $x \geq 6$
67. $-3 \leq x \leq 5$
68. $x \geq-7$ and $x \leq-1$
69. $x \geq-2$ or $x \leq 4$
70. $|x| \geq 0$

Find the coordinate of the midpoint of the segment. (p. 15)

72.

Investigating
 evimity CONSIRUCHON
 Use ariter Lesson 14

1.4 Copy and Bisect Segments and Angles

MATERIALS • compass • straightedge

QUESTION How can you copy and bisect segments and angles?

A construction is a geometric drawing that uses a limited set of tools, usually a compass and straightedge. You can use a compass and straightedge (a ruler without marks) to construct a segment that is congruent to a given segment, and an angle that is congruent to a given angle.

Explore 1 Copy a segment

Use the following steps to construct a segment that is congruent to $\overline{A B}$.

Draw a segment Use a straightedge to draw a segment longer than $\overline{A B}$. Label point C on the new segment.

Measure length Set your compass at the length of $\overline{A B}$.

Copy length Place the compass at C. Mark point D on the new segment. $\overline{C D} \cong \overline{A B}$.

Explore 2 Bisect a segment

Use the following steps to construct a bisector of $\overline{A B}$ and to find the midpoint M of $\overline{A B}$.

STEP 1

Draw an arc Place the compass at A. Use a compass setting that is greater than half the length of $\overline{A B}$. Draw an arc.

STEP 2

Draw a second arc Keep the same compass setting. Place the compass at B. Draw an arc. It should intersect the other arc at two points.

STEP 3

Bisect segment Draw a segment through the two points of intersection. This segment bisects $\overline{A B}$ at M, the midpoint of $\overline{A B}$.

EXPLORE 3 Copy an angle

Use the following steps to construct an angle that is congruent to $\angle A$. In this construction, the radius of an arc is the distance from the point where the compass point rests (the center of the arc) to a point on the arc drawn by the compass.

EXPLORE 4 Bisect an angle

Use the following steps to construct an angle bisector of $\angle A$.

Draw an arc Place the compass at A. Draw an arc that intersects both sides of the angle. Label the intersections C and B.

STEP 2

Draw arcs Place the compass at C. Draw an arc. Then place the compass point at B. Using the same radius, draw another arc.

Draw a ray Label the intersection G. Use a straightedge to draw a ray through A and G. $\overrightarrow{A G}$ bisects $\angle A$.

Draw Conclusions Use your observations to complete these exercises

1. Describe how you could use a compass and a straightedge to draw a segment that is twice as long as a given segment.
2. Draw an obtuse angle. Copy the angle using a compass and a straightedge. Then bisect the angle using a compass and straightedge.

1.5 Describe Angle Pair Relationships

You used angle postulates to measure and classify angles. You will use special angle relationships to find angle measures.

Key Vocabulary

- complementary angles
- supplementary angles
- adjacent angles
- linear pair
- vertical angles

Two angles are complementary angles if the sum of their measures is 90°. Each angle is the complement of the other. Two angles are supplementary angles if the sum of their measures is 180°. Each angle is the supplement of the other.

Complementary angles and supplementary angles can be adjacent angles or nonadjacent angles. Adjacent angles are two angles that share a common vertex and side, but have no common interior points.

EXAMPLE 1 Identify complements and supplements

AVOID ERRORS

In Example 1, $\angle D A C$ and
$\angle D A B$ share a common vertex. But they share common interior points, so they are not adjacent angles.

In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.

Solution

Because $32^{\circ}+58^{\circ}=90^{\circ}, \angle B A C$ and $\angle R S T$ are complementary angles.
Because $122^{\circ}+58^{\circ}=180^{\circ}, \angle C A D$ and $\angle R S T$ are supplementary angles.
Because $\angle B A C$ and $\angle C A D$ share a common vertex and side, they are adjacent.

Guided Practice for Example 1

1. In the figure, name a pair of complementary angles, a pair of supplementary angles, and a pair of adjacent angles.
2. Are $\angle K G H$ and $\angle L K G$ adjacent angles? Are $\angle F G K$ and $\angle F G H$ adjacent angles? Explain.

EXAMPLE 2 Find measures of a complement and a supplement

READ DIAGRAMS
Angles are sometimes named with numbers. An angle measure in a diagram has a degree symbol. An angle name does not.
a. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 1=68^{\circ}$, find $m \angle 2$.
b. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 4=56^{\circ}$, find $m \angle 3$.

Solution

a. You can draw a diagram with complementary adjacent angles to illustrate the relationship.

$$
m \angle 2=90^{\circ}-m \angle 1=90^{\circ}-68^{\circ}=22^{\circ}
$$

b. You can draw a diagram with supplementary adjacent angles to illustrate the relationship.
$m \angle 3=180^{\circ}-m \angle 4=180^{\circ}-56^{\circ}=124^{\circ}$

EXAMPLE 3 Find angle measures

READ DIAGRAMS In a diagram, you can assume that a line that looks straight is straight. In Example 3, B, C, and D lie on $\overleftrightarrow{B D}$. So, $\angle B C D$ is a straight angle.

SPORTS When viewed from the side, the frame of a ball-return net forms a pair of supplementary angles with the ground. Find $m \angle B C E$ and $m \angle E C D$.

Solution

STEP 1 Use the fact that the sum of the measures of supplementary angles is 180°.

$$
\begin{aligned}
m \angle B C E+m \angle E C D & =180^{\circ} & & \text { Write equation. } \\
(4 x+8)^{\circ}+(x+2)^{\circ} & =180^{\circ} & & \text { Substitute. } \\
5 x+10 & =180 & & \text { Combine like terms. } \\
5 x & =170 & & \text { Subtract } 10 \text { from each side. } \\
x & =34 & & \text { Divide each side by } 5 .
\end{aligned}
$$

STEP 2 Evaluate the original expressions when $x=34$.

$$
\begin{aligned}
& m \angle B C E=(4 x+8)^{\circ}=(4 \cdot 34+8)^{\circ}=144^{\circ} \\
& m \angle E C D=(x+2)^{\circ}=(34+2)^{\circ}=36^{\circ}
\end{aligned}
$$

- The angle measures are 144° and 36°.

GUIDED PRACTICE for Examples 2 and 3

3. Given that $\angle 1$ is a complement of $\angle 2$ and $m \angle 2=8^{\circ}$, find $m \angle 1$.
4. Given that $\angle 3$ is a supplement of $\angle 4$ and $m \angle 3=117^{\circ}$, find $m \angle 4$.
5. $\angle L M N$ and $\angle P Q R$ are complementary angles. Find the measures of the angles if $m \angle L M N=(4 x-2)^{\circ}$ and $m \angle P Q R=(9 x+1)^{\circ}$.

ANGLE PAIRS Two adjacent angles are a linear pair if their noncommon sides are opposite rays. The angles in a linear pair are supplementary angles.

Two angles are vertical angles if their sides form two pairs of opposite rays.

$\angle 1$ and $\angle 2$ are a linear pair.

$\angle 3$ and $\angle 6$ are vertical angles.
$\angle 4$ and $\angle 5$ are vertical angles.

EXAMPLE 4 Identify angle pairs

AVOID ERRORS

In the diagram, one side of $\angle 1$ and one side of $\angle 3$ are opposite rays. But the angles are not a linear pair because they are not adjacent.

Identify all of the linear pairs and all of the vertical angles in the figure at the right.

Solution

To find vertical angles, look for angles formed by intersecting lines.

$\rightarrow \angle 1$ and $\angle 5$ are vertical angles.
To find linear pairs, look for adjacent angles whose noncommon sides are opposite rays.
$\downarrow \angle 1$ and $\angle 4$ are a linear pair. $\angle 4$ and $\angle 5$ are also a linear pair.

EXAMPLE 5 Find angle measures in a linear pair

xy ALGEBRA Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.

Solution

Let x° be the measure of one angle. The measure of the other angle is $5 x^{\circ}$. Then use the fact that the angles of a linear pair are supplementary to write an equation.

$$
\begin{aligned}
x^{\circ}+5 x^{\circ} & =180^{\circ} & & \text { Write an equation. } \\
6 x & =180 & & \text { Combine like terms. } \\
x & =30 & & \text { Divide each side by } 6 .
\end{aligned}
$$

- The measures of the angles are 30° and $5\left(30^{\circ}\right)=150^{\circ}$.

GUIDED PRACTICE for Examples 4 and 5

6. Do any of the numbered angles in the diagram at the right form a linear pair? Which angles are vertical angles? Explain.
7. The measure of an angle is twice the measure of its complement. Find the measure of each angle.

Interpreting a Diagram

There are some things you can conclude from a diagram, and some you cannot. For example, here are some things that you can conclude from the diagram at the right:

- All points shown are coplanar.

- Points A, B, and C are collinear, and B is between A and C.
- $\overleftrightarrow{A C}, \overrightarrow{B D}$, and $\overrightarrow{B E}$ intersect at point B.
- $\angle D B E$ and $\angle E B C$ are adjacent angles, and $\angle A B C$ is a straight angle.
- Point E lies in the interior of $\angle D B C$.

In the diagram above, you cannot conclude that $\overline{A B} \cong \overline{B C}$, that $\angle D B E \cong \angle E B C$, or that $\angle A B D$ is a right angle. This information must be indicated, as shown at the right.

1.5 EXERCISES

HOMEWORK \bigcirc = WORKED-OUT SOLUTIONS
KEY on p. WS1 for Exs. 9, 21, and 47

* $=$ STANDARDIZED TEST PRACTICE Exs. 2, 16, 30, and 53
$*=\underset{\text { Ex. } 55}{\text { MuLTIPLE REPRESENTATIONS }}$

Skill Practice

EXAMPLE 1
on p. 35
for Exs. 3-7

1. VOCABULARY Sketch an example of adjacent angles that are complementary. Are all complementary angles adjacent angles? Explain.
2. \star WRITING Are all linear pairs supplementary angles? Are all supplementary angles linear pairs? Explain.

IIDENTIFYING ANGLES Tell whether the indicated angles are adjacent.
3. $\angle A B D$ and $\angle D B C$

4. $\angle W X Y$ and $\angle X Y Z$

5. $\angle L Q M$ and $\angle N Q M$

IDENTIFYING ANGLES Name a pair of complementary angles and a pair of supplementary angles.
6.

7.

EXAMPLE 2 on p. 36
for Exs. 8-16

EXAMPLE 3
on p. 36
for Exs. 17-19

EXAMPLE 4
on p. 37
for Exs. 20-27

EXAMPLE 5
on p. 37
for Exs. 28-30

COMPLEMENTARY ANGLES $\angle 1$ and $\angle 2$ are complementary angles. Given the measure of $\angle 1$, find $m \angle 2$.
8. $m \angle 1=43^{\circ}$
9. $m \angle 1=21^{\circ}$
10. $m \angle 1=89^{\circ}$
11. $m \angle 1=5^{\circ}$

SUPPLEMENTARY ANGLES $\angle 1$ and $\angle 2$ are supplementary angles. Given the measure of $\angle 1$, find $m \angle 2$.
12. $m \angle 1=60^{\circ}$
13. $m \angle 1=155^{\circ}$
14. $m \angle 1=130^{\circ}$
15. $m \angle 1=27^{\circ}$
16. \star MULTIPLE CHOICE The arm of a crossing gate moves 37° from vertical. How many more degrees does the arm have to move so that it is horizontal?
(A) 37°
(B) 53°
(C) 90°
(D) 143°

xy ALGEBRA Find $m \angle D E G$ and $m \angle G E F$.
17.

18.

19.

IDENTIFYING ANGLE PAIRS Use the diagram below. Tell whether the angles are vertical angles, a linear pair, or neither.
20. $\angle 1$ and $\angle 4$
21.) $\angle 1$ and $\angle 2$
22. $\angle 3$ and $\angle 5$
23. $\angle 2$ and $\angle 3$
24. $\angle 7, \angle 8$, and $\angle 9$
25. $\angle 5$ and $\angle 6$
26. $\angle 6$ and $\angle 7$
27. $\angle 5$ and $\angle 9$

28. $x y$ ALGEBRA Two angles form a linear pair. The measure of one angle is 4 times the measure of the other angle. Find the measure of each angle.
29. ERROR ANALYSIS Describe and correct the error made in finding the value of x.

$$
\underbrace{3 x^{\circ}}_{x^{\circ}} \rightarrow \begin{align*}
x^{\circ}+3 x^{\circ} & =180^{\circ} \\
4 x & =180 \\
x & =45
\end{align*}
$$

30. \star MULTIPLE CHOICE The measure of one angle is 24° greater than the measure of its complement. What are the measures of the angles?
(A) 24° and 66°
(B) 24° and 156°
(C) 33° and 57°
(D) 78° and 102°
$x y$ ALGEBRA Find the values of x and y.
31.

32.

33.
$\stackrel{(3 y+30)^{\circ}}{\stackrel{2 y^{\circ}}{\stackrel{\circ}{(x+5)^{\circ}}} \underset{(4 x-100)^{\circ}}{\longrightarrow}}$

REASONING Tell whether the statement is always, sometimes, or never true. Explain your reasoning.
34. An obtuse angle has a complement.
35. A straight angle has a complement.
36. An angle has a supplement.
37. The complement of an acute angle is an acute angle.
38. The supplement of an acute angle is an obtuse angle.

FINDING ANGLES $\angle A$ and $\angle B$ are complementary. Find $m \angle A$ and $m \angle B$.
39. $m \angle A=(3 x+2)^{\circ}$
40. $m \angle A=(15 x+3)^{\circ}$
41. $m \angle A=(11 x+24)^{\circ}$
$m \angle B=(x-4)^{\circ}$
$m \angle B=(5 x-13)^{\circ}$
$m \angle B=(x+18)^{\circ}$

FINDING ANGLES $\angle A$ and $\angle B$ are supplementary. Find $m \angle A$ and $m \angle B$.
42. $m \angle A=(8 x+100)^{\circ}$
43. $m \angle A=(2 x-20)^{\circ}$
44. $m \angle A=(6 x+72)^{\circ}$
$m \angle B=(2 x+50)^{\circ}$
$m \angle B=(3 x+5)^{\circ}$
$m \angle B=(2 x+28)^{\circ}$
45. CHALLENGE You are given that $\angle G H J$ is a complement of $\angle R S T$ and $\angle R S T$ is a supplement of $\angle A B C$. Let $m \angle G H J$ be x°. What is the measure of $\angle A B C$? Explain your reasoning.

PROBLEM SOLVING

IIDENTIFYIING ANGLES Tell whether the two angles shown are
complementary, supplementary, or neither.
46.

@HomeTutor
ARCHITECTURE The photograph shows the Rock and Roll Hall of Fame in Cleveland, Ohio. Use the photograph to identify an example type of the indicated type of angle pair.
49. Supplementary angles
50. Vertical angles
51. Linear pair
52. Adjacent angles
@HomeTutor for problem solving help at classzone.com
53. \star SHORT RESPONSE Use the photograph shown at the right. Given that $\angle F G B$ and $\angle B G C$ are supplementary angles, and $m \angle F G B=120^{\circ}$, explain how to find the measure of the complement of $\angle B G C$.

54. SHADOWS The length of a shadow changes as the sun rises. In the diagram below, the length of $\overline{C B}$ is the length of a shadow. The end of the shadow is the vertex of $\angle A B C$, which is formed by the ground and the sun's rays. Describe how the shadow and angle change as the sun rises.

55. MULTIPLE REPRESENTATIONS Let x° be an angle measure. Let $y_{1}{ }^{\circ}$ be the measure of a complement of the angle and let $y_{2}{ }^{\circ}$ be the measure of a supplement of the angle.
a. Writing an Equation Write equations for y_{1} as a function of x, and for y_{2} as a function of x. What is the domain of each function? Explain.
b. Drawing a Graph Graph each function and describe its range.
56. CHALLENGE The sum of the measures of two complementary angles exceeds the difference of their measures by 86°. Find the measure of each angle. Explain how you found the angle measures.

Mixed Review

Make a table of values and graph the function. (p. 884)
57. $y=5-x$
58. $y=3 x$
59. $y=x^{2}-1$
60. $y=-2 x^{2}$

PREVIEW
Prepare for Lesson 1.6 in Exs. 61-63.

In each figure, name the congruent sides and congruent angles. (pp. 9, 24)
61.

62.

63.

QUIZ for Lessons 1.4-1.5

In each diagram, $\overrightarrow{B D}$ bisects $\angle A B C$. Find $m \angle A B D$ and $m \angle D B C$. (p. 24)
1.

2.

3.

Find the measure of (a) the complement and (b) the supplement of $\angle 1$. (p. 35)
4. $m \angle 1=47^{\circ}$
5. $m \angle 1=19^{\circ}$
6. $m \angle 1=75^{\circ}$
7. $m \angle 1=2^{\circ}$

1.6 Classify Polygons

Before
Now
Why?

You classified angles.
You will classify polygons.
So you can find lengths in a floor plan, as in Ex. 32.

Key Vocabulary

- polygon
side, vertex
- convex
- concave
- n-gon
- equilateral
- equiangular
- regular

KEY CONCEPT

For Your Notebook

Identifying Polygons

In geometry, a figure that lies in a plane is called a plane figure. A polygon is a closed plane figure with the following properties.

1. It is formed by three or more line segments called sides.
2. Each side intersects exactly two sides, one at each endpoint, so that no two sides with a common endpoint are collinear.

Each endpoint of a side is a vertex of the polygon. The plural of vertex is vertices. A polygon can be named by listing the vertices in consecutive order. For example, $A B C D E$ and $C D E A B$ are both correct names for the polygon at the right.

A polygon is convex if no line that contains a side of the polygon contains a point in the interior of the polygon. A polygon that is not convex is called nonconvex or concave.

convex polygon

concave polygon

EXAMPLE 1 Identify polygons

READ VOCABULARY
A planefigure is twodimensional. Later, you will study threedimensional space figures such as prisms and cylinders.

Tell whether the figure is a polygon and whether it is convex or concave.
a.

b.

c.

d.

Solution

a. Some segments intersect more than two segments, so it is not a polygon.
b. The figure is a convex polygon.
c. Part of the figure is not a segment, so it is not a polygon.
d. The figure is a concave polygon.

CLASSIFYING POLYGONS A polygon is named by the number of its sides.

Number of sides	Type of polygon		Number of sides	Type of polygon
3	Triangle		8	Octagon
4	Quadrilateral		9	Nonagon
5	Pentagon		10	Decagon
6	Hexagon		12	Dodecagon
7	Heptagon	n	n-gon	

The term \boldsymbol{n}-gon, where n is the number of a polygon's sides, can also be used to name a polygon. For example, a polygon with 14 sides is a 14 -gon.

In an equilateral polygon, all sides are congruent. In an equiangular polygon, all angles in the interior of the polygon are congruent. A regular polygon is a convex polygon that is both equilateral and equiangular.

regular pentagon

EXAMPLE 2 Classify polygons

READ DIAGRAMS Double marks are used in part (b) of Example 2 to show that more than one pair of sides are congruent and more than one pair of angles are congruent.

Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
a.

b.

c.

Solution

a. The polygon has 6 sides. It is equilateral and equiangular, so it is a regular hexagon.
b. The polygon has 4 sides, so it is a quadrilateral. It is not equilateral or equiangular, so it is not regular.
c. The polygon has 12 sides, so it is a dodecagon. The sides are congruent, so it is equilateral. The polygon is not convex, so it is not regular.

Animated Geometry at classzone.com

Guided Practice for Examples 1 and 2

1. Sketch an example of a convex heptagon and an example of a concave heptagon.
2. Classify the polygon shown at the right by the number of sides. Explain how you know that the sides of the polygon are congruent and that the angles of the polygon are congruent.

READ VOCABULARY Hexagonal means "shaped like a hexagon."

ALGEBRA A table is shaped like a regular hexagon.
The expressions shown represent side lengths of the hexagonal table. Find the length of a side.

Solution

First, write and solve an equation to find the value of x. Use the fact that the sides of a regular hexagon are congruent.

$$
\begin{aligned}
3 x+6 & =4 x-2 & & \text { Write equation. } \\
6 & =x-2 & & \text { Subtract } 3 x \text { from each side. } \\
8 & =x & & \text { Add } 2 \text { to each side. }
\end{aligned}
$$

Then find a side length. Evaluate one of the expressions when $x=8$.

$$
3 x+6=3(8)+6=30
$$

- The length of a side of the table is 30 inches.

GUIDED PRACTICE for Example 3

3. The expressions $8 y^{\circ}$ and $(9 y-15)^{\circ}$ represent the measures of two of the angles in the table in Example 3. Find the measure of an angle.

1.6 EXERCISES

$$
\begin{aligned}
& \text { HOMEWORK } \begin{array}{c}
\text { = WORKED-OUT SOLUTIONS } \\
\text { KEY } \\
\text { on p. WS1 for Exs. 13, 19, and } 33
\end{array} \\
& \begin{array}{c}
\star \\
= \\
\text { STANDARDIZED TEST PRACTICE }
\end{array} \\
& \text { Exs. 2, 7, 37, 39, and 40 }
\end{aligned}
$$

SKILL PRACTICE

EXAMPLE 1
on p. 42
for Exs. 3-7

1. VOCABULARY Explain what is meant by the term n-gon.
2. \star WRITING Imagine that you can tie a string tightly around a polygon. If the polygon is convex, will the length of the string be equal to the distance around the polygon? What if the polygon is concave? Explain.

IDENTIFYING POLYGONS Tell whether the figure is a polygon. If it is not, explain why. If it is a polygon, tell whether it is convex or concave.
3.

4.

5.

6.

7. \star MULTIPLE CHOICE Which of the figures is a concave polygon?
(A)

(B)

(C)

(D)

EXAMPLE 2 on p. 43
for Exs. 8-14

EXAMPLE 3 on p. 44 for Exs. 15-17

CLASSIFYING Classify the polygon by the number of sides. Tell whether the polygon is equilateral, equiangular, or regular. Explain your reasoning.
8.

9.

10.

11.

12.

(13.)

14. ERROR ANALYSIS Two students were asked to draw a regular hexagon, as shown below. Describe the error made by each student.

Student A

Student B

15. $x y$ ALGEBRA The lengths (in inches) of two sides of a regular pentagon are represented by the expressions $5 x-27$ and $2 x-6$. Find the length of a side of the pentagon.
16. $x y$ ALGEBRA The expressions $(9 x+5)^{\circ}$ and $(11 x-25)^{\circ}$ represent the measures of two angles of a regular nonagon. Find the measure of an angle of the nonagon.
17. xy ALgebra The expressions $3 x-9$ and $23-5 x$ represent the lengths (in feet) of two sides of an equilateral triangle. Find the length of a side.

USING PROPERTIES Tell whether the statement is always, sometimes, or never true.
18. A triangle is convex.
19. A decagon is regular.
20. A regular polygon is equiangular.
21. A circle is a polygon.
22. A polygon is a plane figure.
23. A concave polygon is regular.

DRAWING Draw a figure that fits the description.
24. A triangle that is not regular
25. A concave quadrilateral
26. A pentagon that is equilateral but not equiangular
27. An octagon that is equiangular but not equilateral
XI) ALGEBRA Each figure is a regular polygon. Expressions are given for two side lengths. Find the value of x.
28.

29.

30.

31. CHALLENGE Regular pentagonal tiles and triangular tiles are arranged in the pattern shown. The pentagonal tiles are all the same size and shape and the triangular tiles are all the same size and shape. Find the angle measures of the triangular tiles. Explain your reasoning.

PROBLEM SOLVING

EXAMPLE 2
on p. 43
for Exs. 33-36
32. ARCHITECTURE Longwood House, shown in the photograph on page 42, is located in Natchez, Mississippi. The diagram at the right shows the floor plan of a part of the house.
a. Tell whether the red polygon in the diagram is convex or concave.
b. Classify the red polygon and tell whether it appears to be regular.
@HomeTutor for problem solving help at classzone.com

SIGNS Each sign suggests a polygon. Classify the polygon by the number of sides. Tell whether it appears to be equilateral, equiangular, or regular.
(33.)

34.

35.

36.

@HomeTutor for problem solving help at classzone.com
37. \star MULTIPLE CHOICE Two vertices of a regular quadrilateral are $A(0,4)$ and $B(0,-4)$. Which of the following could be the other two vertices?
(A) $C(4,4)$ and $D(4,-4)$
(B) $C(-4,4)$ and $D(-4,-4)$
(C) $C(8,-4)$ and $D(8,4)$
(D) $C(0,8)$ and $D(0,-8)$
38. MULTI-STEP PROBLEM The diagram shows the design of a lattice made in China in 1850.
a. Sketch five different polygons you see in the diagram. Classify each polygon by the number of sides.
b. Tell whether each polygon you sketched is concave or convex, and whether the polygon appears to be equilateral, equiangular, or regular.

EXAMPLE 3
on p. 44
for Ex. 39
39. \star SHORT RESPONSE The shape of the button shown is a regular polygon. The button has a border made of silver wire. How many millimeters of silver wire are needed for this border? Explain.

40. \star EXTENDED RESPONSE A segment that joins two nonconsecutive vertices of a polygon is called a diagonal. For example, a quadrilateral has two diagonals, as shown below.

Type of polygon	Diagram	Number of sides	Number of diagonals
Quadrilateral		4	2
Pentagon	$?$	$?$	$?$
Hexagon	$?$	$?$	$?$
Heptagon	$?$	$?$	$?$

a. Copy and complete the table. Describe any patterns you see.
b. How many diagonals does an octagon have? a nonagon? Explain.
c. The expression $\frac{n(n-3)}{2}$ can be used to find the number of diagonals in an n-gon. Find the number of diagonals in a 60 -gon.
41. LINE SYMMETRY A figure has line symmetry if it can be folded over exactly onto itself. The fold line is called the line of symmetry. A regular quadrilateral has four lines of symmetry, as shown. Find the number of lines of symmetry in each polygon.
a. A regular triangle
b. A regular pentagon
c. A regular hexagon
d. A regular octagon

regular quadrilateral 4 lines of symmetry

MIXED REVIEW

PREVIEW
Prepare for
Lesson 1.7
in Exs. 43-51.

Solve the equation.

43. $\frac{1}{2}(35) b=140$ (p. 875)
44. $x^{2}=144$ (p.882)
45. $3.14 r^{2}=314$ (p. 882)

Copy and complete the statement. (p. 886)
46. $500 \mathrm{~m}=$ \qquad cm
47. 12 mi \square
48. 672 in. $=$ \qquad ? yd
49. $1200 \mathrm{~km}=$ \qquad m
50. $4 \frac{1}{2} \mathrm{ft}=$? yd
51. $3800 \mathrm{~m}=$? km

Find the distance between the two points. (p. 15)
52. $D(-13,13), E(0,-12)$
53. $F(-9,-8), G(-9,7)$
54. $H(10,5), J(-2,-2)$

1.7 Investigate Perimeter and Area

MATERIALS • graph paper •graphing calculator

QUESTION How can you use a graphing calculator to find the smallest

 possible perimeter for a rectangle with a given area?You can use the formulas below to find the perimeter P and the area A of a rectangle with length ℓ and width w.

$$
P=2 \ell+2 w \quad A=\ell w
$$

EXPLORE Find perimeters of rectangles with fixed areas

STEP 1 Draw rectangles Draw different rectangles, each

 with an area of 36 square units. Use lengths of $2,4,6,8,10,12,14,16$, and 18 units.

STEP 2 Enter data Use the STATISTICS menu on a graphing calculator. Enter the rectangle lengths in List 1. Use the keystrokes below to calculate and enter the rectangle widths and perimeters in Lists 2 and 3.

Keystrokes for entering widths in List 2:
$36 \div$ 2nd [L1] ENTER

Keystrokes for entering perimeters in List 3:
$2 \times$ 2nd [L1] + 2nd $2 \times$ [L2] ENTER

STEP 3 Make a scatter plot Make a scatter plot using the lengths from List 1 as the x-values and the perimeters from List 3 as the y-values. Choose an appropriate viewing window. Then use the trace feature to see the coordinates of each point.

How does the graph show which of your rectangles from Step 1 has the smallest perimeter?

DrAW CONCLUSIONS Use your observations to complete these exercises

1. Repeat the steps above for rectangles with areas of 64 square units.
2. Based on the Explore and your results from Exercise 1, what do you notice about the shape of the rectangle with the smallest perimeter?

1.7 Find Perimeter, Circumference, and Area

Before	You classified polygons.
Now	You will find dimensions of polygons.
Why?	So you can use measures in science, as in Ex. 46.

Key Vocabulary

- perimeter, p. 923
- circumference, p. 923
- area, p. 923
- diameter, p. 923
- radius, p. 923

Recall that perimeter is the distance around a figure, circumference is the distance around a circle, and area is the amount of surface covered by a figure. Perimeter and circumference are measured in units of length, such as meters (m) and feet (ft). Area is measured in square units, such as square meters $\left(\mathrm{m}^{2}\right)$ and square feet $\left(\mathrm{ft}^{2}\right)$.

KEY CONCEPT

For Your Notebook
Formulas for Perimeter P, Area A, and Circumference C

Square
side length s
$P=4 s$
$A=s^{2}$

Rectangle
length ℓ and width w
$P=2 \ell+2 w$
$A=\ell w$

Triangle

side lengths a, b, and c, base b, and height h

$$
\begin{aligned}
& P=a+b+c \\
& A=\frac{1}{2} b h
\end{aligned}
$$

EXAMPLE 2 Find the circumference and area of a circle

APPROXIMATE π The approximations 3.14 and $\frac{22}{7}$ are commonly used as approximations for the irrational number π. Unless told otherwise, use 3.14 for π.

TEAM PATCH You are ordering circular cloth patches for your soccer team's uniforms. Find the approximate circumference and area of the patch shown.

Solution

First find the radius. The diameter is 9 centimeters, so the radius is $\frac{1}{2}(9)=4.5$ centimeters. Then find the circumference and area. Use 3.14 to approximate the value of π.

$$
\begin{aligned}
& C=2 \pi r \approx 2(3.14)(4.5)=28.26 \\
& \mathrm{~A}=\pi r^{2} \approx 3.14(4.5)^{2}=63.585
\end{aligned}
$$

- The circumference is about 28.3 cm . The area is about $63.6 \mathrm{~cm}^{2}$.

Guided Practice for Examples 1 and 2

Find the area and perimeter (or circumference) of the figure. If necessary, round to the nearest tenth.
1.

2.

3.

EXAMPLE 3 Standardized Test Practice

AVOID ERRORS
Write down your calculations to make sure you do not make a mistake substituting values in the Distance Formula.

Triangle $Q R S$ has vertices $Q(1,2), R(4,6)$, and $S(5,2)$. What is the approximate perimeter of triangle $Q R S$?
(A) 8 units
(B) 8.3 units
(C) 13.1 units
(D) 25.4 units

Solution

First draw triangle $Q R S$ in a coordinate plane. Find the side lengths. Use the Distance Formula to find $Q R$ and $R S$.

$$
\begin{aligned}
& Q S=|5-1|=4 \text { units } \\
& Q R=\sqrt{(4-1)^{2}+(6-2)^{2}}=\sqrt{25}=5 \text { units } \\
& R S=\sqrt{(5-4)^{2}+(2-6)^{2}}=\sqrt{17} \approx 4.1 \text { units }
\end{aligned}
$$

Then find the perimeter.

$$
P=Q S+Q R+R S \approx 4+5+4.1=13.1 \text { units }
$$

The correct answer is C. (A) (B) (C) (D)

ANOTHER WAY

For an alternative method for solving the problem in Example 4, turn to page 57 for the Problem Solving Workshop.

SKATING RINK An ice-resurfacing machine is used to smooth the surface of the ice at a skating rink. The machine can resurface about 270 square yards of ice in one minute.

About how many minutes does it take the machine to resurface a rectangular skating rink that is 200 feet long and 90 feet wide?

Solution

The machine can resurface the ice at a rate of 270 square yards per minute. So, the amount of time it takes to resurface the skating rink depends on its area.

STEP 1 Find the area of the rectangular skating rink.

$$
\text { Area }=\ell w=200(90)=18,000 \mathrm{ft}^{2}
$$

The resurfacing rate is in square yards per minute. Rewrite the area of the rink in square yards. There are 3 feet in 1 yard, and $3^{2}=9$ square feet in 1 square yard.
$18,000 \mathrm{ft}^{2} \cdot \frac{1 \mathrm{yd}^{2}}{9 \mathrm{ft}^{2}}=2000 \mathrm{yd}^{2} \quad$ Use unit analysis.
STEP 2 Write a verbal model to represent the situation. Then write and solve an equation based on the verbal model.

Let t represent the total time (in minutes) needed to resurface the skating rink.

$$
\begin{aligned}
& \begin{array}{c}
\text { Area of rink } \\
\left(\mathrm{yd}^{2}\right)
\end{array}=\begin{array}{c}
\text { Resurfacing rate } \\
\left(\mathrm{yd}^{2} \text { per } \mathrm{min}\right)
\end{array} \\
& 2000=270 \cdot t \quad \text { Substitute. } \\
& 7.4 \approx t \quad \begin{array}{c}
\text { Total time } \\
(\mathrm{min})
\end{array} \\
& \\
& \text { Divide each side by } 270 .
\end{aligned}
$$

- It takes the ice-resurfacing machine about 7 minutes to resurface the skating rink.

Guided Practice for Examples 3 and 4

4. Describe how to find the height from F to $\overline{E G}$ in the triangle at the right.
5. Find the perimeter and the area of the triangle shown at the right.
6. WHAT IF? In Example 4, suppose the skating rink is twice as long and twice as wide. Will it take an ice-resurfacing machine twice as long to resurface the
 skating rink? Explain your reasoning.

EXAMPLE 5 Find unknown length

The base of a triangle is $\mathbf{2 8}$ meters. Its area is 308 square meters. Find the height of the triangle.

Solution

$$
\begin{aligned}
A & =\frac{1}{2} b h & & \text { Write formula for the area of a triangle. } \\
308 & =\frac{1}{2}(28) h & & \text { Substitute } \mathbf{3 0 8} \text { for } \boldsymbol{A} \text { and } 28 \text { for } b . \\
22 & =h & & \text { Solve for } h .
\end{aligned}
$$

- The height is 22 meters.

Guided Practice
 for Example 5

7. The area of a triangle is 64 square meters, and its height is 16 meters.

Find the length of its base.

1.7 EXERCISES

HOMEWORK KEY	= WORKED-OUT SOLUTIONS on p. WS1 for Exs. 7, 21, and 41 $\star=$ STANDARDIZED TEST PRACTICE Exs. 2, 19, 26, 38, and 45 = MULTIPLE REPRESENTATIONS Ex. 44

SkILL Practice

1. VOCABULARY How are the diameter and radius of a circle related?
2. \star WRITING Describe a real-world situation in which you would need to find a perimeter, and a situation in which you would need to find an area. What measurement units would you use in each situation?
3. ERROR ANALYSIS Describe and correct the error made in finding the area of a triangle with a height of 9 feet and a base of 52 feet.

$$
A=52(9)=468 \mathrm{ft}^{2}
$$

on p. 49
for Exs. 3-10

PERIMETER AND AREA Find the perimeter and area of the shaded figure.
4.

5.

6.

7.)

8.

9.

EXAMPLE 2
on p. 50
for Exs. 11-15

EXAMPLE 3
on p. 50
for Exs. 16-19

EXAMPLE 4
on p. 51
for Exs. 20-26

EXAMPLE 5
on p. 52
for Exs. 27-30

CONVERTING UNITS Copy and complete the statement.
20. $187 \mathrm{~cm}^{2}=$ \qquad ? m^{2}
(21.) $13 \mathrm{ft}^{2}=$ \qquad ? yd^{2}
22. 18 in. $^{2}=$ \qquad ft^{2}
23. $8 \mathrm{~km}^{2}=$ \qquad m^{2}
24. $12 \mathrm{yd}^{2}=$ \qquad ft^{2}
25. $24 \mathrm{ft}^{2}=$ \qquad in. ${ }^{2}$
26. \star MULTIPLE CHOICE A triangle has an area of 2.25 square feet. What is the area of the triangle in square inches?
(A) 27 in. 2
(B) 54 in. ${ }^{2}$
(C) 144 in. ${ }^{2}$
(D) 324 in. ${ }^{2}$

UNKNOWN MEASURES Use the information about the figure to find the indicated measure.
27. Area $=261 \mathrm{~m}^{2}$ Find the height h.

28. Area $=66$ in. ${ }^{2}$

Find the base b.

29. Perimeter $=25$ in. Find the width w.

30. UNKNOWN MEASURE The width of a rectangle is 17 inches. Its perimeter is 102 inches. Find the length of the rectangle.
31. Xy Algebra The area of a rectangle is 18 square inches. The length of the rectangle is twice its width. Find the length and width of the rectangle.
32. $x y$ Algebra The area of a triangle is 27 square feet. Its height is three times the length of its base. Find the height and base of the triangle.
33. $x y$ ALGEBRA Let x represent the side length of a square. Find a regular polygon with side length x whose perimeter is twice the perimeter of the square. Find a regular polygon with side length x whose perimeter is three times the length of the square. Explain your thinking.

FINDING SIDE LENGTHS Find the side length of the square with the given area. Write your answer as a radical in simplest form.
34. $A=184 \mathrm{~cm}^{2}$
35. $A=346$ in. 2
36. $A=1008 \mathrm{mi}^{2}$
37. $A=1050 \mathrm{~km}^{2}$
38. \star SHORT RESPONSE In the diagram, the diameter of the yellow circle is half the diameter of the red circle. What fraction of the area of the red circle is not covered by the yellow circle? Explain.
39. CHALLENGE The area of a rectangle is $30 \mathrm{~cm}^{2}$ and its perimeter is
 26 cm . Find the length and width of the rectangle.

PROBLEM SOLVING

EXAMPLES
1 and 2
on pp. 49-50
for Exs. 40-41

EXAMPLE 4 on p. 51
for Ex. 42
40. WATER LILIES The giant Amazon water lily has a lily pad that is shaped like a circle. Find the circumference and area of a lily pad with a diameter of 60 inches. Round your answers to the nearest tenth.
@HomeTutor for problem solving help at classzone.com

41.) LAND You are planting grass on a rectangular plot of land.

You are also building a fence around the edge of the plot. The plot is 45 yards long and 30 yards wide. How much area do you need to cover with grass seed? How many feet of fencing do you need?
@HomeTutor for problem solving help at classzone.com
42. MULTI-STEP PROBLEM Chris is installing a solar panel. The maximum amount of power the solar panel can generate in a day depends in part on its area. On a sunny day in the city where Chris lives, each square meter of the panel can generate up to 125 watts of power. The flat rectangular panel is 84 centimeters long and 54 centimeters wide.
a. Find the area of the solar panel in square meters.
b. What is the maximum amount of power (in watts) that the panel could generate if its area was 1 square meter? 2 square meters? Explain.
c. Estimate the maximum amount of power Chris's solar panel can generate. Explain your reasoning.
43. MULTI-STEP PROBLEM The eight spokes of a ship's wheel are joined at the wheel's center and pass through a large wooden circle, forming handles on the outside of the circle. From the wheel's center to the tip of the handle, each spoke is 21 inches long.
a. The circumference of the outer edge of the large wooden circle is 94 inches. Find the radius of the outer edge of the circle to the nearest inch.
b. Find the length x of a handle on the wheel. Explain.

44. MULTIPLE REPRESENTATIONS Let x represent the length of a side of a square. Let y_{1} and y_{2} represent the perimeter and area of that square.
a. Making a Table Copy and complete the table.

Length, x	1	2	5	10	25
Perimeter, y_{1}	$?$	$?$	$?$	$?$	$?$
Area, y_{2}	$?$	$?$	$?$	$?$	$?$

b. Making a Graph Use the completed table to write two sets of ordered pairs: (x, y_{1}) and (x, y_{2}). Graph each set of ordered pairs.
c. Analyzing Data Describe any patterns you see in the table from part (a) and in the graphs from part (b).
45. \star EXTENDED RESPONSE The photograph at the right shows the Crown Fountain in Chicago, Illinois. At this fountain, images of faces appear on a large screen. The images are created by light-emitting diodes (LEDs) that are clustered in groups called modules. The LED modules are arranged in a rectangular grid.
a. The rectangular grid is approximately 7 meters wide and 15.2 meters high. Find the area of the grid.
b. Suppose an LED module is a square with a side length of 4 centimeters. How many rows and how many columns of LED modules would be needed to make the Crown Fountain screen? Explain your reasoning.

46. ASTRONOMY The diagram shows a gap in Saturn's circular rings. This gap is known as the Cassini division. In the diagram, the red circle represents the ring that borders the inside of the Cassini division. The yellow circle represents the ring that borders the outside of the division.
a. The radius of the red ring is 115,800 kilometers. The radius of the yellow ring is 120,600 kilometers. Find the circumference of the red ring and the circumference of the yellow ring. Round your answers to the nearest hundred kilometers.
b. Compare the circumferences of the two rings. About how many kilometers
 greater is the yellow ring's circumference than the red ring's circumference?
47. CHALLENGE In the diagram at the right, how many times as great is the area of the circle as the area of the square? Explain your reasoning.
48. xy Algebra You have 30 yards of fencing with which to make a rectangular pen. Let x be the length of the pen.

a. Write an expression for the width of the pen in terms of x. Then write a formula for the area y of the pen in terms of x.
b. You want the pen to have the greatest possible area. What length and width should you use? Explain your reasoning.

MIXED REVIEW

PREVIEW Prepare for Lesson 2.1 in Exs. 49-50.
49. Use the equation $y=2 x+1$ to copy and complete the table of values. (p. 884)

x	1	2	3	4	5
y	$?$	$?$	$?$	$?$	$?$

50. Each number in a pattern is 6 less than the previous number. The first number in the pattern is 100 . Write the next three numbers. (p. 894)

In Exercises 51 and 52, draw a diagram to represent the problem. Then find the indicated measure. (p. 42)
51. The lengths (in inches) of two sides of a regular triangle are given by the expressions $5 x+40$ and $8 x-13$. Find the length of a side of the triangle.
52. The measures of two angles of an equiangular hexagon are $12 x^{\circ}$ and $(10 x+20)^{\circ}$. Find the measure of an angle of the hexagon.

QUIZ for Lessons 1.6-1.7

Tell whether the figure is a polygon. If it is not, explain why. If it is a polygon, tell whether it is convex or concave. (p. 42)
1.

2.

3.

Find the perimeter and area of the shaded figure. (p. 49)
4.

5.

6.

7. GARDENING You are spreading wood chips on a rectangular garden. The garden is $3 \frac{1}{2}$ yards long and $2 \frac{1}{2}$ yards wide. One bag of wood chips covers 10 square feet. How many bags of wood chips do you need? (p. 49)

PROBLEM SOLVING WORKSHOP LESSON 1.1

Using AbIERNADIVEMEHHODS

Another Way to Solve Example 4, page 51

Problem

MULTIPLE REPRESENTATIONS In Example 4 on page 51, you saw how to use an equation to solve a problem about a skating rink. Looking for a pattern can help you write an equation.

SKATING RINK An ice-resurfacing machine is used to smooth the surface of the ice at a skating rink. The machine can resurface about 270 square yards of ice in one minute. About how many minutes does it take the machine to resurface a rectangular skating rink that is 200 feet long and 90 feet wide?

METHOD
 Using a Pattern You can use a table to look for a pattern.

STEP 1 Find the area of the rink in square yards. In Example 4 on page 51, you found that the area was 2000 square yards.

STEP 2 Make a table that shows the relationship between the time spent resurfacing the ice and the area resurfaced. Look for a pattern.

Time (min)	Area resurfaced $\left(\mathrm{yd}^{2}\right)$
1	$1 \cdot 270=270$
2	$2 \cdot 270=540$
t	$t \cdot 270=A$

Use the pattern to write an equation for the area A that has been resurfaced after t minutes.

STEP 3 Use the equation to find the time t (in minutes) that it takes the machine to resurface 2000 square yards of ice.

$$
\begin{aligned}
270 t & =A \\
270 t & =2000 \\
t & \approx 7.4
\end{aligned}
$$

- It takes about 7 minutes.

Practice

1. PLOWING A square field is $\frac{1}{8}$ mile long on each side. A tractor can plow about 180,000 square feet per hour. To the nearest tenth of an hour, about how long does it take to plow the field? $(1 \mathrm{mi}=5280 \mathrm{ft}$.
2. ERROR ANALYSIS To solve Exercise 1 above, a student writes the equation $660=180,000 t$, where t is the number of hours spent plowing. Describe and correct the error in the equation.
3. PARKING LOT A rectangular parking lot is 110 yards long and 45 yards wide. It costs about $\$.60$ to pave each square foot of the parking lot with asphalt. About how much will it cost to pave the parking lot?
4. WALKING A circular path has a diameter of 120 meters. Your average walking speed is 4 kilometers per hour. About how many minutes will it take you to walk around the path 3 times?

Lessons 1.4-1.7

1. MULTI-STEP PROBLEM You are covering the rectangular roof of a shed with shingles. The roof is a rectangle that is 4 yards long and 3 yards wide. Asphalt shingles cost $\$.75$ per square foot and wood shingles cost \$1.15 per square foot.
a. Find the area of the roof in square feet.
b. Find the cost of using asphalt shingles and the cost of using wood shingles.
c. About how much more will you pay to use wood shingles for the roof?
2. OPEN-ENDED In the window below, name a convex polygon and a concave polygon. Classify each of your polygons by the number of sides.

3. EXTENDED RESPONSE The diagram shows a decoration on a house. In the diagram, $\angle H G D$ and $\angle H G F$ are right angles, $m \angle D G B=21^{\circ}, m \angle H B G=55^{\circ}$, $\angle D G B \cong \angle F G C$, and $\angle H B G \cong \angle H C G$.

a. List two pairs of complementary angles and five pairs of supplementary angles.
b. Find $m \angle F G C, m \angle B G H$, and $m \angle H G C$. Explain your reasoning.
c. Find $m \angle H C G, m \angle D B G$, and $m \angle F C G$. Explain your reasoning.
4. GRIDDED ANSWER $\angle 1$ and $\angle 2$ are supplementary angles, and $\angle 1$ and $\angle 3$ are complementary angles. Given $m \angle 1$ is 28° less than $m \angle 2$, find $m \angle 3$ in degrees.
5. EXTENDED RESPONSE You use bricks to outline the borders of the two gardens shown below. Each brick is 10 inches long.

a. You lay the bricks end-to-end around the border of each garden. How many bricks do you need for each garden? Explain.
b. The bricks are sold in bundles of 100 . How many bundles should you buy? Explain.
6. SHORT RESPONSE The frame of a mirror is a regular pentagon made from pieces of bamboo. Use the diagram to find how many feet of bamboo are used in the frame.

7. GRIDDED ANSWER As shown in the diagram, a skateboarder tilts one end of a skateboard. Find $m \angle Z W X$ in degrees.

8. SHORT RESPONSE Use the diagram below.

a. Find the perimeter of quadrilateral $A B C D$.
b. Find the area of triangle $A B C$ and the area of triangle $A D C$. What is the area of quadrilateral $A B C D$? Explain.

1 CHAPIER SUMMARY

BIG IDEAS

Big Idea 1

Describing Geometric Figures
You learned to identify and classify geometric figures.
Point A

Big Idea (2)

Measuring Geometric Figures

SEGMENTS You measured segments in the coordinate plane.

Distance Formula
Distance between $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$:
$A B=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

Midpoint Formula

Coordinates of midpoint M of $\overline{A B}$, with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$:
$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

ANGLES You classified angles and found their measures.

Complementary angles
$m \angle 1+m \angle 2=90^{\circ}$

Supplementary angles

$m \angle 3+m \angle 4=180^{\circ}$

FORMULAS Perimeter and area formulas are reviewed on page 49.

Big Idea (c)

Understanding Equality and Congruence

Congruent segments have equal lengths. Congruent angles have equal measures.

$\overline{A B} \cong \overline{B C}$ and $A B=B C$

$\angle \boldsymbol{J K L} \cong \angle \mathbf{L K M}$ and $\boldsymbol{m} \angle \boldsymbol{J K L}=\boldsymbol{m} \angle \mathbf{L K M}$

1 CHAPTER REVIEW

REVIEW KEY VOCABULARY

\ldots For a list of	• undefined terms, $p .2$	• congruent segments, $p .11$	• supplementary angles, $p .35$
postulates and	point, line, plane	• midpoint, $p .15$	• adjacent angles, $p .35$

VOCABULARY EXERCISES

1. Copy and complete: Points A and B are the ? of $\overline{A B}$.
2. Draw an example of a linear pair.
3. If Q is between points P and R on $\overleftrightarrow{P R}$, and $P Q=Q R$, then Q is the ? of $\overline{P R}$.

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 1.

1.1 Identify Points, Lines, and Planes

EXAMPLE

Use the diagram shown at the right.
Another name for $\overleftrightarrow{C D}$ is line m.
Points A, B, and C are collinear.
Points A, B, C, and F are coplanar.

EXERCISES

EXAMPLES
1,2 , and 3
on pp. 3-4
for Exs. 4-8
4. Give another name for line g.
5. Name three points that are not collinear.
6. Name four points that are coplanar.
7. Name a pair of opposite rays.
8. Name the intersection of line h and plane M.

@HomeTutor classzone.com

Chapter Review Practice

1.2 Use Segments and Congruence

EXAMPLE

Find the length of $\overline{\boldsymbol{H J}}$.

$$
\begin{aligned}
G J & =G H+H J & & \text { Segment Addition Postulate } \\
27 & =18+H J & & \text { Substitute } \mathbf{2 7} \text { for } \mathbf{G J} \text { and } \mathbf{1 8} \text { for } \mathbf{G H} . \\
9 & =H J & & \text { Subtract } \mathbf{1 8} \text { from each side. }
\end{aligned}
$$

EXAMPLES

2, 3, and 4 on pp. 10-11 for Exs. 9-12

EXERCISES

Find the indicated length.
9. Find $A B$.

10. Find $N P$.

11. Find $X Y$.

12. The endpoints of $\overline{D E}$ are $D(-4,11)$ and $E(-4,-13)$. The endpoints of $\overline{G H}$ are $G(-14,5)$ and $H(-9,5)$. Are $\overline{D E}$ and $\overline{G H}$ congruent? Explain.

1.3 Use Midpoint and Distance Formulas

EXAMPLE

$\overline{E F}$ has endpoints $E(1,4)$ and $F(3,2)$. Find (a) the length of $\overline{E F}$ rounded to the nearest tenth of a unit, and (b) the coordinates of the midpoint M of $\overline{E F}$.
a. Use the Distance Formula.

$$
E F=\sqrt{(3-1)^{2}+(2-4)^{2}}=\sqrt{2^{2}+(-2)^{2}}=\sqrt{8} \approx 2.8 \text { units }
$$

b. Use the Midpoint Formula.

$$
M\left(\frac{1+3}{2}, \frac{4+2}{2}\right)=M(2,3)
$$

EXERCISES

EXAMPLES
2,3, and 4
on pp. 16-18
for Exs. 13-19
13. Point M is the midpoint of $\overline{J K}$. Find $J K$ when $J M=6 x-7$ and $M K=2 x+3$.

In Exercises 14-17, the endpoints of a segment are given. Find the length of the segment rounded to the nearest tenth. Then find the coordinates of the midpoint of the segment.
14. $A(2,5)$ and $B(4,3)$
15. $F(1,7)$ and $G(6,0)$
16. $H(-3,9)$ and $J(5,4)$
17. $K(10,6)$ and $L(0,-7)$
18. Point $C(3,8)$ is the midpoint of $\overline{A B}$. One endpoint is $A(-1,5)$. Find the coordinates of endpoint B.
19. The endpoints of $\overline{E F}$ are $E(2,3)$ and $F(8,11)$. The midpoint of $\overline{E F}$ is M. Find the length of $\overline{E M}$.

1
 CHAPTER REVIEW

1.4 Measure and Classify Angles

EXAMPLE

Given that $m \angle Y X V$ is 60°,
find $m \angle Y X Z$ and $m \angle Z X V$.

STEP 1 Find the value of x.

$$
\begin{aligned}
m \angle Y X V & =m \angle Y X Z+m \angle Z X V \\
60^{\circ} & =(2 x+11)^{\circ}+(x+13)^{\circ} \\
x & =12
\end{aligned}
$$

Angle Addition Postulate Substitute angle measures.

Solve for \boldsymbol{x}.

STEP 2 Evaluate the given expressions when $x=12$.

$$
\begin{aligned}
& m \angle Y X Z=(2 x+11)^{\circ}=(2 \cdot 12+11)^{\circ}=35^{\circ} \\
& m \angle Z X V=(x+13)^{\circ}=(12+13)^{\circ}=25^{\circ}
\end{aligned}
$$

EXERCISES

EXAMPLES
3 and 5
on pp. 26, 28
for Exs. 20-21
20. In the diagram shown at the right, $m \angle L M N=140^{\circ}$. Find $m \angle P M N$.
21. $\overrightarrow{V Z}$ bisects $\angle U V W$, and $m \angle U V Z=81^{\circ}$. Find $m \angle U V W$. Then classify $\angle U V W$ by its angle measure.

1.5 Describe Angle Pair Relationships

 pp. 35-41
EXAMPLE

a. $\angle 1$ and $\angle 2$ are complementary angles. Given that $m \angle 1=37^{\circ}$, find $m \angle 2$. $m \angle 2=90^{\circ}-m \angle 1=90^{\circ}-37^{\circ}=53^{\circ}$
b. $\angle 3$ and $\angle 4$ are supplementary angles. Given that $m \angle 3=106^{\circ}$, find $m \angle 4$. $m \angle 4=180^{\circ}-m \angle 3=180^{\circ}-106^{\circ}=74^{\circ}$

EXERCISES

EXAMPLES
2 and 3
on p. 36
for Exs. 22-31
$\angle 1$ and $\angle 2$ are complementary angles. Given the measure of $\angle 1$, find $m \angle 2$.
22. $m \angle 1=12^{\circ}$
23. $m \angle 1=83^{\circ}$
24. $m \angle 1=46^{\circ}$
25. $m \angle 1=2^{\circ}$
$\angle 3$ and $\angle 4$ are supplementary angles. Given the measure of $\angle 3$, find $m \angle 4$.
26. $m \angle 3=116^{\circ}$
27. $m \angle 3=56^{\circ}$
28. $m \angle 3=89^{\circ}$
29. $m \angle 3=12^{\circ}$
30. $\angle 1$ and $\angle 2$ are complementary angles. Find the measures of the angles when $m \angle 1=(x-10)^{\circ}$ and $m \angle 2=(2 x+40)^{\circ}$.
31. $\angle 1$ and $\angle 2$ are supplementary angles. Find the measures of the angles when $m \angle 1=(3 x+50)^{\circ}$ and $m \angle 2=(4 x+32)^{\circ}$. Then classify $\angle 1$ by its angle measure.

@HomeTutor classzone.com

 Chapter Review Practice
1.6 Classify Polygons

EXAMPLE

Classify the polygon by the number of sides. Tell whether it is equilateral, equiangular, or regular. Explain.
The polygon has four sides, so it is a quadrilateral. It is not
 equiangular or equilateral, so it is not regular.

EXERCISES

EXAMPLES

2 and 3
on pp. 43-44
for Exs. 32-35

Classify the polygon by the number of sides. Tell whether it is equilateral, equiangular, or regular. Explain.
32.

33.

34.

35. Pentagon $A B C D E$ is a regular polygon. The length of $\overline{B C}$ is represented by the expression $5 x-4$. The length of $\overline{D E}$ is represented by the expression $2 x+11$. Find the length of $\overline{A B}$.

1.7 Find Perimeter, Circumference, and Area

EXAMPLE

The diameter of a circle is 10 feet. Find the circumference and area of the circle. Round to the nearest tenth.
The radius is half of the length of the diameter, so $r=\frac{1}{2}(10)=5 \mathrm{ft}$.

Circumference

$$
C=2 \pi r \approx 2(3.14)(5)=31.4 \mathrm{ft}
$$

Area

$$
A=\pi r^{2} \approx 3.14\left(5^{2}\right)=78.5 \mathrm{ft}^{2}
$$

EXERCISES

In Exercises 36-38, find the perimeter (or circumference) and area of the figure described. If necessary, round to the nearest tenth.
36. Circle with diameter 15.6 meters
37. Rectangle with length $4 \frac{1}{2}$ inches and width $2 \frac{1}{2}$ inches
38. Triangle with vertices $U(1,2), V(-8,2)$, and $W(-4,6)$
39. The height of a triangle is 18.6 meters. Its area is 46.5 square meters. Find the length of the triangle's base.
40. The area of a circle is 320 square meters. Find the radius of the circle. Then find the circumference. Round your answers to the nearest tenth.

Use the diagram to decide whether the statement is true or false.

1. Point A lies on line m.
2. Point D lies on line n.
3. Points B, C, E, and Q are coplanar.
4. Points C, E, and B are collinear.
5. Another name for plane G is plane $Q E C$.

Find the indicated length.

6. Find $H J$.

7. Find $B C$.

8. Find $X Z$.

In Exercises 9-11, find the distance between the two points.
9. $T(3,4)$ and $W(2,7)$
10. $C(5,10)$ and $D(6,-1)$
11. $M(-8,0)$ and $N(-1,3)$
12. The midpoint of $\overline{A B}$ is $M(9,7)$. One endpoint is $A(3,9)$. Find the coordinates of endpoint B.
13. Line t bisects $\overline{C D}$ at point $M, C M=3 x$, and $M D=27$. Find $C D$.

In Exercises 14 and 15, use the diagram.

14. Trace the diagram and extend the rays. Use a protractor to measure $\angle G H J$. Classify it as acute, obtuse, right, or straight.

15. Given $m \angle K H J=90^{\circ}$, find $m \angle L H J$.
16. The measure of $\angle Q R T$ is 154°, and $\overrightarrow{R S}$ bisects $\angle Q R T$. What are the measures of $\angle Q R S$ and $\angle S R T$?

In Exercises 17 and 18, use the diagram at the right.
17. Name four linear pairs.

18. Name two pairs of vertical angles.
19. The measure of an angle is 64°. What is the measure of its complement? What is the measure of its supplement?
20. A convex polygon has half as many sides as a concave 10-gon. Draw the concave polygon and the convex polygon. Classify the convex polygon by the number of sides it has.
21. Find the perimeter of the regular pentagon shown at the right.
22. CARPET You can afford to spend $\$ 300$ to carpet a room that is 5.5 yards long and 4.5 yards wide. The cost to purchase and
 install the carpet you like is $\$ 1.50$ per square foot. Can you afford to buy this carpet? Explain.

SOLVE LINEAR EQUATIONS AND WORD PROBLEMS

Example 1 Solve linear equations

Solve the equation $\mathbf{- 3}(x+5)+\mathbf{4 x}=\mathbf{2 5}$.

$$
\begin{aligned}
-3(x+5)+4 x=25 & \text { Write original equation. } \\
-3 x-15+4 x=25 & \text { Use the Distributive Property. } \\
x-15=25 & \text { Group and combine like terms. } \\
x=40 & \text { Add 15 to each side. }
\end{aligned}
$$

EXAMPLE 2 Solve a real-world problem

MEMBERSHIP COSTS A health club charges an initiation fee of $\mathbf{\$ 5 0}$.
Members then pay $\$ 45$ per month. You have $\$ 400$ to spend on a health club membership. For how many months can you afford to be member?
Let n represent the number of months you can pay for a membership.

$$
\begin{array}{rlrl}
\$ 400 & =\text { Initiation fee }+(\text { Monthly Rate } \times \text { Number of Months) } \\
400 & =50+45 n & & \text { Substitute. } \\
350 & =45 n & & \text { Subtract } 50 \text { from each side. } \\
7.8 & =n & & \text { Divide each side by } 45 .
\end{array}
$$

- You can afford to be a member at the health club for 7 months.

EXERCISES

EXAMPLE 1 for Exs. 1-9

EXAMPLE 2 for Exs. 10-12

Solve the equation.

1. $9 y+1-y=49$
2. $5 z+7+z=-8$
3. $-4(2-t)=-16$
4. $7 a-2(a-1)=17$
5. $\frac{4 x}{3}+2(3-x)=5$
6. $\frac{2 x-5}{7}=4$
7. $9 c-11=-c+29$
8. $2(0.3 r+1)=23-0.1 r$
9. $5(k+2)=3(k-4)$
10. GIFT CERTIFICATE You have a $\$ 50$ gift certificate at a store. You want to buy a book that costs $\$ 8.99$ and boxes of stationery for your friends. Each box costs $\$ 4.59$. How many boxes can you buy with your gift certificate?
11. CATERING It costs $\$ 350$ to rent a room for a party. You also want to hire a caterer. The caterer charges $\$ 8.75$ per person. How many people can come to the party if you have $\$ 500$ to spend on the room and the caterer?
12. JEWELRY You are making a necklace out of glass beads. You use one bead that is $1 \frac{1}{2}$ inches long and smaller beads that are each $\frac{3}{4}$ inch long. The necklace is 18 inches long. How many smaller beads do you need?

Scoring Rubric

Full Credit

- solution is complete and correct

Partial Credit

- solution is complete but has errors, or
- solution is without error but incomplete

No Credit

- no solution is given, or
- solution makes no sense

SHORT RESPONSE QUESTIONS

Problem

You want to rent portable flooring to set up a dance floor for a party. The table below shows the cost of renting portable flooring from a local company. You want to have a rectangular dance floor that is 5 yards long and 4 yards wide. How much will it cost to rent flooring? Explain your reasoning.

If the floor area is \ldots	Then the cost is...
less than 100 square feet	$\$ 6.50$ per square foot
between 100 and 200 square feet	$\$ 6.25$ per square foot

Below are sample solutions to the problem. Read each solution and the comments in blue to see why the sample represents full credit, partial credit, or no credit.

SAMPLE 1: Full credit solution

Find the area of the dance floor. Area $=\ell w=5(4)=20 \mathrm{yd}^{2}$.
Then convert this area to square feet. There are $3^{2}=9 \mathrm{ft}^{2}$ in $1 \mathrm{yd}^{2}$.

$$
20 \mathrm{yd}^{2} \cdot \frac{9 \mathrm{ft}^{2}}{1 \mathrm{yd}^{2}}=180 \mathrm{ft}^{2}
$$

Because $180 \mathrm{ft}^{2}$ is between $100 \mathrm{ft}^{2}$ and $200 \mathrm{ft}^{2}$, the price of flooring is $\$ 6.25$ per square foot. Multiply the price per square foot by the area.

$$
\text { Total cost }=\frac{\$ 6.25}{1 \mathrm{ft}^{2}} \cdot 180 \mathrm{ft}^{2}=\$ 1125
$$

It will cost $\$ 1125$ to rent flooring.
The answer is correct.

The reasoning is correct, and the computations are accurate.
atanant

SAMPLE 2: Partial credit solution

thersis

The area of the dance floor is $5(4)=20$ square yards. Convert this area to square feet. There are 3 feet in 1 yard.

$$
20 \mathrm{yd}^{2} \cdot \frac{3 \mathrm{ft}^{2}}{1 \mathrm{yd}^{2}}=60 \mathrm{ft}^{2}
$$

The flooring will cost $\$ 6.50$ per square foot because $60 \mathrm{ft}^{2}$ is less than $100 \mathrm{ft}^{2}$. To find the total cost, multiply the area by the cost per square foot.

$$
60 \mathrm{ft}^{2} \cdot \frac{\$ 6.50}{1 \mathrm{ft}^{2}}=\$ 390
$$

It will cost $\$ 390$ to rent flooring.

SAMPLE 3: Partial credit solution

The computations and the answer are correct, but the reasoning is incomplete.

The area of the room is $180 \mathrm{ft}^{2}$, so the flooring price is $\$ 6.25$. The total cost is $180 \cdot 6.25=\$ 1125$.

It will cost $\$ 1125$ to rent flooring.

SAMPLE 4: No credit solution

Floor area $=4 \times 5=20$.
Cost $=20 \times \$ 650=\$ 13,000$.
It will cost $\$ 13,000$ to rent flooring.

PRACTICE Apply the Scoring Rubric

Use the rubric on page 66 to score the solution to the problem below as full credit, partial credit, or no credit. Explain your reasoning.

PROBLEM You have 450 daffodil bulbs. You divide a 5 yard by 2 yard rectangular garden into 1 foot by 1 foot squares. You want to plant the same number of bulbs in each square. How many bulbs should you plant in each square? Explain your reasoning.

1. First find the area of the plot in square feet. There are 3 feet in 1 yard, so the length is $5(3)=15$ feet, and the width is $2(3)=6$ feet. The area is $15(6)=90$ square feet. The garden plot can be divided into 90 squares with side length 1 foot. Divide 450 by 90 to get 5 bulbs in each square.
2. The area of the garden plot is $5(2)=10$ square yards. There are 3 feet in 1 yard, so you can multiply 10 square yards by 3 to get an area of 30 square feet. You can divide the garden plot into 30 squares. To find how many bulbs per square, divide 450 bulbs by 30 to get 15 bulbs.
3. Divide 450 by the area of the plot: 450 bulbs $\div 10$ yards $=45$ bulbs. You should plant 45 bulbs in each square.
4. Multiply the length and width by 3 feet to convert yards to feet. The area is $15 \mathrm{ft} \times 6 \mathrm{ft}=90 \mathrm{ft}^{2}$. Divide the garden into 90 squares.

1 \star standardized TEST PRACTICE

SHORT RESPONSE

1. It costs $\$ 2$ per square foot to refinish a hardwood floor if the area is less than 300 square feet, and $\$ 1.75$ per square foot if the area is greater than or equal to 300 square feet. How much does it cost to refinish a rectangular floor that is 6 yards long and 4.5 yards wide? Explain your reasoning.
2. As shown below, the library (point L) and the Town Hall (point T) are on the same straight road. Your house is on the same road, halfway between the library and the Town Hall. Let point H mark the location of your house. Find the coordinates of H and the approximate distance between the library and your house. Explain your reasoning.

3. The water in a swimming pool evaporates over time if the pool is not covered. In one year, a swimming pool can lose about 17.6 gallons of water for every square foot of water that is exposed to air. About how much water would evaporate in one year from the surface of the water in the pool shown? Explain your reasoning.

4. A company is designing a cover for a circular swimming pool. The diameter of the pool is 20 feet. The material for the cover costs $\$ 4$ per square yard. About how much will it cost the company to make the pool cover? Explain your reasoning.
5. You are making a mat with a fringed border. The mat is shaped like a regular pentagon, as shown below. Fringe costs $\$ 1.50$ per yard. How much will the fringe for the mat cost? Explain your reasoning.

6. Angles A and B are complementary angles, $m \angle A=(2 x-4)^{\circ}$, and $m \angle B=(4 x-8)^{\circ}$. Find the measure of the supplement of $\angle B$. Explain your reasoning.
7. As shown on the map, you have two ways to drive from Atkins to Canton. You can either drive through Baxton, or you can drive directly from Atkins to Canton. About how much shorter is the trip from Atkins to Canton if you do not go through Baxton? Explain your reasoning.

8. A jeweler is making pairs of gold earrings. For each earring, the jeweler will make a circular hoop like the one shown below. The jeweler has 2 meters of gold wire. How many pairs of gold hoops can the jeweler make? Justify your reasoning.

MULTIPLE CHOICE

9. The midpoint of $\overline{A B}$ is $M(4,-2)$. One endpoint is $A(-2,6)$. What is the length of $\overline{A B}$?
(A) 5 units
(B) 10 units
(C) 20 units
(D) 28 units
10. The perimeter of a rectangle is 85 feet. The length of the rectangle is 4 feet more than its width. Which equation can be used to find the width w of the rectangle?
(A) $85=2(w+4)$
(B) $85=2 w+2(w-4)$
(C) $85=2(2 w+4)$
(D) $85=w(w+4)$

GRIDDED ANSWER

11. In the diagram, $\overrightarrow{Y W}$ bisects $\angle X Y Z$. Find $m \angle X Y Z$ in degrees.

12. Angles A and B are complements, and the measure of $\angle A$ is 8 times the measure of $\angle B$. Find the measure (in degrees) of the supplement of $\angle A$.
13. The perimeter of the triangle shown is 400 feet. Find its area in square feet.

EXTENDED RESPONSE

14. The athletic director at a college wants to build an indoor playing field. The playing field will be twice as long as it is wide. Artificial turf costs $\$ 4$ per square foot. The director has $\$ 50,000$ to spend on artificial turf.
a. What is the largest area that the director can afford to cover with artificial turf? Explain.
b. Find the approximate length and width of the field to the nearest foot.
15. An artist uses black ink to draw the outlines of 30 circles and 25 squares, and red ink to fill in the area of each circle and square. The diameter of each circle is 1 inch , and the side length of each square is 1 inch . Which group of drawings uses more black ink, the circles or the squares? Which group of drawings uses more red ink? Explain.
16. Points A and C represent the positions of two boats in a large lake. Point B represents the position of a fixed buoy.
a. Find the distance from each boat to the buoy.
b. The boat at point A travels toward the buoy in a straight line at a rate of 5 kilometers per hour. The boat at point C travels to the buoy at a rate of 5.2 kilometers per hour. Which boat reaches the buoy first? Explain.

[^0]: ## PROBLEM SOLVING

 - Mixed Review of Problem Solving, 103, 132
 - Multiple Representations, 77, 111, 120
 - Multi-Step Problems, 85, 102, 103, 110, 119, 130, 132
 - Using Alternative Methods, 120
 - Real-World Problem Solving Examples, 74, 89, 106, 115

[^1]: ## PROBLEM SOLVING

 - Mixed Review of Problem Solving, 745, 778
 - Multiple Representations, 744
 - Multi-Step Problems, 726, 735, 742, 745, 778
 - Using Alternative Methods, 744
 - Real-World Problem Solving Examples, 722, 730, 738, 739, 747, 749, 763, 772, 773, 785

[^2]: @HomeTutor for problem solving help at classzone.com

