
Geometry Honors- Chapter 2 Mixed Review

1) Given: <FBD is a right angle

Prove: <FBA and <ABD are complementary

2) Given: $\overline{AP} \cong \overline{CP}$ and $\overline{BP} \cong \overline{DP}$

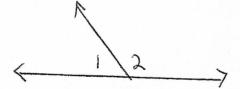
Prove: $\overline{AB} \cong \overline{CD}$

3) Given: M is the midpoint of AB

Prove: AB=2(AM)

4) Given: <1 and <2 are complementary<3 and <2 are complementary

Prove: $<1 \cong <3$

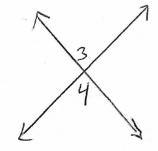

- 5) Solve and justify each step with an algebraic property: -2(x + 4) 6x = 40 2x
- 6) Give the correct reason for each statement.
- a) Statement

Reason

1)

2)

- 1) <1 and <2 are a linear pair
- 2) m<1+m<2=180

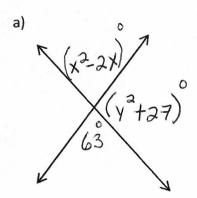

b) Statement

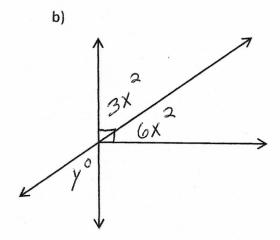
Reason

- 1) <3 and <4 are vertical angles
 - are vertical arigies
- 2) <3 ≅ <43) m<3 = m<4

2) 3)

1)




- 7) Consider each relationship below and decide it is reflexive, symmetric, and/or transitive.
 - a) ______ is the "same age as" _____
 - b) ______ is the "square of"______
 - c) _____is a "reflection of" _____

8) Write the Converse of the following conditional. Decide if the converse is True or False, if False give a counterexample.

"If two angles are vertical angles, then they are congruent."

- 9) Determine whether a valid conclusion can be reached. If so state the conclusion and the Law of Logic used.
 - a) If I pass Geometry Honors, then I will take Algebra 2 Honors next year. Shelly is taking Algebra 2 Honors next year.
 - b) If the WHS football team beats St. Bonaventure, then they will beat Newbury Park. If the WHS football team beats Newbury Park, then they will win their league.
- 10) Draw Plane A intersecting Planes B and C, with Planes B and C not intersecting.
- 11) Graph 2x + 3y = 12 and -2x + 6y = 24. Find the coordinates of their intersection. Show algebraically that this is the point of intersection.
- 12) Write a bi-conditional statement for the definition of a Regular Polygon.
- 13) Solve for x and y.

