Selected Answers

This section contains answers for the oddnumbered problems in each set of Exercises. When a problem has many possible answers, you are given only one sample solution or a hint on how to begin.

CHAPTER $0 \cdot$ CHAPTER 0 CHAPTER $0 \cdot$ CHAPTER

LESSON 0.1

1a. Begin with a 10 -liter bucket and a 7 -liter bucket. Find a way to get exactly 4 liters in the 10 -liter bucket.

1b. Begin with a 10 -liter bucket and a 7 -liter bucket. Find a way to get exactly 2 liters in the 10 -liter bucket.
3. one possible answer: $(14,13)$
5. Hint: Your strategy could include using objects to act out the problem and/or using pictures to show a sequence of steps leading to a solution.
7a.

7c.

7b.

9. Hint: Try using a sequence of pictures similar to those on page 2.
11a. $x^{2}+4 x+7 x+28$ 11b. $x^{2}+5 x+5 x+25$

11c. $x y+2 y+6 x+12$
11d. $x^{2}+3 x-x-3$

13a. $n+3$, where n represents the number
13b. $v=m+24.3$, where v represents Venus's distance from the Sun in millions of miles and m represents Mercury's distance from the Sun in millions of miles.

13c. $s=2 e$, where s represents the number of CDs owned by Seth and e represents the number of CDs owned by Erin.

15a. $\frac{375}{1000}=\frac{3}{8}$
15b. $\frac{142}{100}=\frac{71}{50}=1 \frac{21}{50}$
15c. $\frac{2}{9}$
15d. $\frac{35}{99}$
LESSON 0.2
1a. Subtract 12 from both sides.
1b. Divide both sides by 5 .
1c. Add 18 to both sides.
1d. Multiply both sides by -15 .
3a. $c=27$
3b. $c=5.8$
3c. $c=9$

5a. $x=72$
5b. $x=24$
5c. $x=36$
7a. $-12 L-40 S=-540$
7b. $12 L+75 S=855$
7c. $35 S=315$
7d. $S=9$. The small beads cost $9 \$$ each.
7 e. $L=15$. The large beads cost $15 \ddagger$ each.
7f. $J=264$. Jill will pay $\$ 2.64$ for her beads.
9a. Solve Equation 1 for a. Substitute the result, $5 b-42$, for a in Equation 2 to get
$b+5=7((5 b-42)-5)$.
9b. $b=\frac{167}{17}$
9c. $a=\frac{121}{17}$
9d. A has $\frac{121}{17}$ or about 7 denarii, and B has $\frac{167}{17}$ or about 10 denarii.
11a. Draw a 45° angle, then subtract a 30° angle.
11b. Draw a 45° angle, then add a 30° angle.
11c. Draw a 45° angle, then add a 60° angle.
13a. 98
13b. -273
15. Hint: Try using a sequence of pictures similar to those on page 2 . Also be sure to convert all measurements to cups.

LESSON 0.3
1a. approximately 4.3 s
1b. 762 cm
1c. 480 mi
3. $150 \mathrm{mi} / \mathrm{h}$
5a. $a=12.8$
5b. $b=\frac{4}{3}=1 . \overline{3}$
5c. $c=10$
5d. $d=8$
7a. 54 in. 2
7b. $1.44 \mathrm{~m}^{3}$
7c. 1.20 ft
7d. 24 cm

9a. Equation iii. Explanations will vary.
$\begin{array}{lll}\text { 9b. i. } t \approx 0.03 & \text { 9b. ii. } t \approx 0.03 & \text { 9b. iii. } t \approx 8.57\end{array}$
9c. It would take approximately 9 minutes.
11a. r^{12}
11b. $\frac{s^{4}}{3}$
11c. t^{-4} or $\frac{1}{t^{4}}$
11d. $48 u^{8}$
13a. $x^{2}+1 x+5 x+5$
13b. $x^{2}+3 x+3 x+9$

13c. $x^{2}+3 x-3 x-9$

	x		-3
	x^{2}		
	$-3 x$		
	$3 x$		

CHAPTER 0 REMEW

1. Hint: Try using a sequence of pictures similar to those on page 2.
3a. $x=\sqrt{18} \mathrm{~cm}=3 \sqrt{2} \mathrm{~cm} \approx 4.2 \mathrm{~cm}$
3b. $y=5$ in.
5a. $x=13$
5b. $y=-2.5$
7a. $c=19.95+0.35 \mathrm{~m}$
7b. possible answer: \$61.25
7c. \$8.40
2. 17 years old

11a. $h=0$. Before the ball is hit, it is on the ground.
11b. $h=32$. Two seconds after being hit, the ball is 32 feet above the ground.
11c. $h=0$. After three seconds, the ball lands on the ground.
13a. $y=1$
13b. $y=8$
13c. $y=\frac{1}{4}$
13d. $x=5$
15. Hint: Mr. Mendoza is meeting with Mr. Green in the conference room at 9:00 А.м.

LESSON11

1a. 20, 26, 32,38
1b. 47, 44, 41, 38
1c. $32,48,72,108$
1d. $-18,-13.7,-9.4,-5.1$
3. $u_{1}=40$ and $u_{n}=u_{n-1}-3.45$ where $n \geq 2$;
$u_{5}=26.2 ; u_{9}=12.4$
5a. $u_{1}=2$ and $u_{n}=u_{n-1}+4$ where $n \geq 2 ; u_{15}=58$
5b. $u_{1}=10$ and $u_{n}=u_{n-1}-5$ where $n \geq 2$;
$u_{12}=-45$
5c. $u_{1}=0.4$ and $u_{n}=0.1 \cdot u_{n-1}$ where $n \geq 2$;
$u_{10}=0.0000000004$
5d. $u_{1}=-2$ and $u_{n}=u_{n-1}-6$ where $n \geq 2$;
$u_{30}=-176$
5e. $u_{1}=1.56$ and $u_{n}=u_{n-1}+3.29$ where $n \geq 2$;
$u_{14}=44.33$
5f. $u_{1}=-6.24$ and $u_{n}=u_{n-1}+2.21$ where $n \geq 2$;
$u 20=35.75$
7. $u_{1}=4$ and $u_{n}=u_{n-1}+6$ where $n \geq 2$; $u_{4}=22$;
$u_{5}=28 ; u_{12}=70 ; u_{32}=190$
9a. 399 km
9b. 10 hours after the first car starts, or 8 hours after the second car starts
11a. $\$ 60$
11b. $\$ 33.75$
11c. during the ninth week
13. Hint: Construct two intersecting lines, and then construct several lines that are perpendicular to one of the lines and equally spaced from each other starting from the point of intersection.
15a. $\frac{70}{100}=\frac{a}{65} ; a=45.5$
15b. $\frac{115}{100}=\frac{b}{37} ; b=42.55$
15c. $\frac{c}{100}=\frac{110}{90} ; c \approx 122.2 \%$
15d. $\frac{d}{100}=\frac{0.5}{18} ; d \approx 2.78 \%$
17. the 7% offer at $\$ 417.30$ per week

LESSON 12

1a. 1.5
1b. 0.4
1c. 1.03
1d. 0.92

3a. $u_{1}=100$ and $u_{n}=1.5 u_{n-1}$ where $n \geq 2$; $u_{10}=3844.3$
3b. $u_{1}=73.4375$ and $u_{n}=0.4 u_{n-1}$ where $n \geq 2$; $u_{10}=0.020$
3c. $u_{1}=80$ and $u_{n}=1.03 u_{n-1}$ where $n \geq 2$;
$u_{10}=104.38$

3d. $u_{1}=208$ and $u_{n}=0.92 u_{n-1}$ where $n \geq 2$;
$u_{10}=98.21$
5a. $(1+0.07) u_{n-1}$ or $1.07 u_{n-1}$
5b. $(1-0.18)$ A or $0.82 A$
5c. $(1+0.08125) x$ or $1.08125 x$
5d. $(2-0.85) u_{n-1}$ or $1.15 u_{n-1}$
7. 100 is the initial height, but the units are unknown. 0.20 is the percent loss, so the ball loses 20% of its height with each rebound.
9a. number of new hires for next five years: 2,3 , 3 (or 4), 4, and 5
9b. about 30 employees
11. $u_{0}=1$ and $u_{n}=0.8855 u_{n-1}$ where $n \geq 1$
$u_{25}=0.048$, or 4.8%. It would take about 25,000
years to reduce to 5%.
$\begin{array}{ll}\text { 13a. } 0.542 \% & \text { 13b. } \$ 502.71 \\ \text { 13c. } \$ 533.49 & \text { 13d. } \$ 584.80\end{array}$
15a. 3 15b. 2, 6,..., 54,... , 486, 1458,..., 13122
15c. 118,098
17a. $4 \mathrm{~m} / \mathrm{s}$
17c.

17b. 10 s
17d.
会 160
17e.

19a. $x \approx 43.34$
19b. $x=-681.5$
19c. $x \approx 0.853$
19d. $x=8$
LESSON 13
1a. 31.2, 45.64, 59.358; shifted geometric, increasing
1b. 776, 753.2, 731.54; shifted geometric, decreasing
1c. $45,40.5,36.45$; geometric, decreasing
1d. $40,40,40$; arithmetic or shifted geometric, neither increasing nor decreasing
3a. 320
3b. 320
3c. 0
3d. 40

5a. The first day, 300 grams of chlorine were added. Each day, 15% disappears, and 30 more grams are added.
5b. It levels off at 200 g .

7a. The account balance will continue to decrease (slowly at first, but faster after a while). It does not level off, but it eventually reaches 0 and stops decreasing.
7b. $\$ 68$
9. $u_{0}=20$ and $u_{n}=(1-0.25) u_{n-1}$ where $n \geq 1 ; 11$ days

11a. Sample answer: After 9 hours there are only 8 mg , after 18 hours there are 4 mg , after 27 hours there are still 2 mg left.
11b.

$\begin{array}{ll}\text { 13a. } u_{2}=-96, u_{5}=240 & \text { 13b. } u_{2}=2, u_{5}=1024\end{array}$
15. 23 times

LESSON 14
1a. 0 to 9 for n and 0 to 16 for u_{n}
1b. 0 to 19 for n and 0 to 400 for u_{n}
1c. 0 to 29 for n and -178 to 25 for u_{n}
1d. 0 to 69 for n and 0 to 3037 for u_{n}
3a. geometric, nonlinear, decreasing
3b. arithmetic, linear, decreasing
3c. geometric, nonlinear, increasing
3d. arithmetic, linear, increasing
5. i. C
5. ii. B
5. iii. A
7. The graph of an arithmetic sequence is always linear. The graph increases when the common difference is positive and decreases when the common difference is negative. The steepness of the graph relates to the common difference.
9a.

9b. The graph appears to have a long-run value of 5000 trees, which agrees with the long-run value found in Exercise 8b in Lesson 1.3.
11. possible answer: $u_{50}=40$ and $u_{n}=u_{n-1}+4$ where $n \geq 51$
13a. 547.5, 620.6, 675.5, 716.6, 747.5
13b. $\frac{547.5-210}{0.75}=450$; subtract 210 and divide the difference by 0.75 .

13c. $u_{0}=747.5$ and $u_{n}=\frac{u_{n-1}-210}{0.75}$ where $n \geq 1$
15a. $33 \frac{1}{3}$
15b. $66 \frac{2}{3}$
15c. 100

15d. The long-run value grows in proportion to the added constant. $7 \cdot 33 \frac{1}{3}=233 \frac{1}{3}$

LESSON 15

1a. investment, because a deposit is added
1b. $\$ 450 \quad$ 1c. $\$ 50 \quad$ 1d. 3.9%
1e. annually (once a year)
3a. $\$ 130.67$ 3b. $\$ 157.33$ 3c. $\$ 184.00$ 3d. $\$ 210.67$
5. $\$ 588.09$

7a. \$1877.14
7b. \$1912.18
7c. \$1915.43
7d. The more frequently the interest is compounded, the more quickly the balance will grow.
9a. $\$ 123.98$
9b. for $u_{0}=5000$ and
$u_{n}=\left(1+\frac{0.085}{12}\right) u_{n-1}+123.98$ where $n \geq 1$

[0, 540, 60, 0, 900000, 100000]
11a. \$528.39
11b. for $u_{0}=60000$ and
$u_{n}=\left(1+\frac{0.096}{12}\right) u_{n-1}-528.39$ where $n \geq 1$

[0, 300, 60, 0, 60000, 10000]
13. something else

15a. $30.48 \mathrm{~cm} \quad$ 15b. 320 km
15c. 129.64 m

CHAPTER 1 REMEW

1a. geometric
1b. $u_{1}=256$ and $u_{n}=0.75 u_{n-1}$ where $n \geq 2$
$\begin{array}{lll}\text { 1c. } u_{8} \approx 34.2 & \text { 1d. } u_{10} \approx 19.2 & \text { 1e. } u_{17} \approx 2.57\end{array}$
3a. $-3,-1.5,0,1.5,3 ; 0$ to 6 for n and -4 to 4 for u_{n}
3b. 2, 4, 10, 28, 82; 0 to 6 for n and 0 to 100 for u_{n}
5. i. C 5. ii. D 5. iii. B 5. iv. A
7. approximately 5300 ; approximately $5200 ; u_{0}=5678$ and $u_{n}=(1-0.24) u_{n-1}+1250$ where $n \geq 1$

9. $u_{1970}=34$ and $u_{n}=(1+0.075) u_{n-1}$ where $n \geq 1971$

CHAPTER 2.CHAPTER 2 CHAPTER 2.CHAPTER

LESSON 21

1a. mean: 29.2 min; median: 28 min; mode: 26 min
1b. mean: 17.35 cm ; median: 17.95 cm ; mode: 17.4 cm
1c. mean: \$2.38; median: \$2.38; mode: none
1d. mean: 2; median: 2; modes: 1 and 3
3. minimum: 1.25 days; first quartile: 2.5 days; median: 3.25 days; third quartile: 4 days; maximum: 4.75 days 5. D
7. Hint: Consider the definitions of each of the values in the five-number summary.
9a. Connie: range $=4, I Q R=3$; Oscar: range $=24$, $I Q R=18$
9b. range $=47 ; I Q R=14$
11. Hint: Choose three values above 65 and three values below 65 .
13a. juniors: $\bar{x} \approx 12.3 \mathrm{lb}$; seniors: $\bar{x} \approx 8.6 \mathrm{lb}$
13b. juniors: median $=10 \mathrm{lb}$; seniors: median $=8 \mathrm{lb}$
13c. Each mean is greater than the corresponding median.
15a. chemical: 2.29816, 2.29869, 2.29915, 2.30074, 2.30182; atmospheric: 2.30956, 2.309935, 2.31010, 2.3026, 2.31163

15b. \rightarrow - Chemical

15c. Hint: Compare the range, $I Q R$, and how the data are skewed. If you conclude that the data are significantly different, then Rayleigh's conjecture is supported.
17a. $6 \sqrt{2} \approx 8.5$ 17b. $\sqrt{89} \approx 9.4$

17c. $\frac{\sqrt{367}}{2} \approx 9.6$
19a. $x=7$
19b. $x=5$
19c. $x=\frac{7}{3}=2 . \overline{3}$

LESSON 22

1a. 47.0
1b. $-6,8,1,-3$
1c. 6.1
3a. 9, 10, 14, 17, 21
3b. range $=12 ; I Q R=7$

3c. centimeters
5. Hint: The number in the middle is 84 . Choose three numbers on either side that also have a mean of 84, and check that the other criteria are satisfied. Adjust data values as necessary.
7. 20.8 and 22.1. These are the same outliers found by the interquartile range.
9a. Hint: The two box plots must have the same endpoints and $I Q R$. The data that is skewed left should have a median value to the right of the center.
9b. The skewed data set will have a greater standard deviation because the data to the left (below the median) will be spread farther from the mean.
9c. Hint: The highest and lowest values for each set must be equal, and the skewed data will have a higher median value.
9d. Answers will vary, depending on 9c, but should support 9b.
11a. First period appears to have pulse rates most alike because that class had the smallest standard deviation.
11b. Sixth period might have the fastest pulse rates because that class has both the highest mean and the greatest standard deviation.
13a. median $=75$ packages; $I Q R=19$ packages
13b. $\bar{X} \approx 80.9$ packages; $s \approx 24.6$ packages
13c. Hot Chocolate Mix

five-number summary: 44, 67.5, 75, 86.5, 158;
outliers: 147, 158
13d. Hot Chocolate Mix

five-number summary: 44, 67, 74, 82, 100

13e. median $=74$ packages; $I Q R=15$ packages; $\bar{x} \approx 74.7$ packages; $s \approx 12.4$ packages
13f. The mean and standard deviation are calculated from all data values, so outliers affect these statistics significantly. The median and $I Q R$, in contrast, are defined by position and not greatly affected by outliers.
15a. mean: \$80.52; median: \$75.00; modes: \$71.00, \$74.00, \$76.00, \$102.50
15b. CD Players

five-number summary: 51, 71, 75, 87, 135.5
The box plot is skewed right.
15c. $I Q R=\$ 16$; outliers: $\$ 112.50$ and $\$ 135.50$
15d. The median will be less affected because the relative positions of the middle numbers will be changed less than the sum of the numbers.
15e.

five-number summary: $51,71,74,82.87,102.5$ The median of the new data set is $\$ 74.00$ and is relatively unchanged.
15f. Hint: Consider whether your decision should be based on the data with or without outliers included.
Decide upon a reasonable first bid, and the maximum you would pay.
17a. $x=59 \quad$ 17b. $y=20$

LESSON 2.3

1a. 2
1b. 9
1c. Hint: Choose values that reflect the number of backpacks within each bin.
3a. 5 values
3b. 25th percentile 3c. 95th percentile
5a. The numbers of acres planted by farmers who plant more than the median number of acres vary more than the numbers of acres planted by farmers who plant fewer than the median number of acres.
5b.

$[0,11,1,0,20,2]$

5c. In a box plot, the part of the box to the left of the median would be smaller than the part to the right because there are more values close to 3 on the left than on the right.

[0, 11, 1, 0, 20, 2]
7a.

- 20406080100

Time (min)
Television has the greater spread.
7b. Television will be skewed right. Neither will be mound shaped.

7c. Homework: median $=40.5 \mathrm{~min} ; I Q R=21.5$ min;
$\bar{x} \approx 38.4 \mathrm{~min} ; s \approx 16.7 \mathrm{~min}$.
Television: median $=36.5 \mathrm{~min} ; I Q R=32 \mathrm{~min}$;
$\bar{x} \approx 42.2 \mathrm{~min} ; s \approx 26.0 \mathrm{~min}$. Answers will vary.
9a.

9b. between $37 \mathrm{mi} / \mathrm{h}$ and $39 \mathrm{mi} / \mathrm{h}$
9c. possible answer: $35 \mathrm{mi} / \mathrm{h}$
9d. Answers will vary.
11a. The sum of the deviations is 13 , not 0 .
11b. 20
11c. i. $\{747,707,669,676,767,783,789,838\}$;
$s \approx 59.1 ;$ median $=757 ; I Q R=94.5$
11c. ii. \{850, 810, 772, 779, 870, 886, 892, 941\};
$s \approx 59.1$; median $=860 ; I Q R=94.5$
11d. Hint: How does translating the data affect the standard deviation and IQR?
13. Marissa runs faster.

1. Plot B has the greater standard deviation, because the data have more spread.
3a. mean: 553.6 points; median: 460 points; mode: none
3b. 5,167, 460, 645, 2019
3c. Points Scored by Los Angeles Lakers skewed

3d. 478 points
3e. Kobe Bryant (2019 points) and Shaquille O'Neal (1822 points)
5a. $\bar{x} \approx 118.3^{\circ} \mathrm{F} ; s \approx 26.8^{\circ} \mathrm{F}$
5b. $\bar{x} \approx-60.0^{\circ} \mathrm{F} ; s \approx 45.7^{\circ} \mathrm{F}$
5c. Antarctica $\left(59^{\circ} \mathrm{F}\right)$ is an outlier for the high temperatures. There are no outliers for the low temperatures.
7. Answers will vary. In general, the theory is supported by the statistics and graphs.

CHAPTER 3 • CHAPTER
3 CHAPTER 3.CHAPTER
LESSON 3.1
1a.

1b. -3 ; The common difference is the same as the slope.
1c. 18; The y-intercept is the u_{0}-term of the sequence.
1d. $y=18-3 x$
3. $y=7+3 x$

| 5a. 1.7 | 5b. 1 | 5c. $-4.5 \quad$ 5d. 0 |
| :--- | :--- | :--- | :--- |
| 7a. 190 mi | | 7b. $y=82+54 x$ |

7c.

[$-1,10,1,-100,1000,100]$
7d. Yes, if only distances on the hour are considered. A line is continuous, whereas an arithmetic sequence is discrete.

9a. $u_{0}=-2$
9b. 5
9c. 50
9d. because you need to add 50 d 's to the original height of u_{0}
9e. $u_{n}=u_{0}+n d$
11a. Hint: The x-values must have a difference of 5 .
11b. Graphs will vary; 4
11c. 7, 11, 15, 19, 23, 27
11d. Hint: The linear equation will have slope of 4 . Find the y-intercept.
13. Although the total earnings are different at the end of the odd-numbered six-month periods, the total yearly income is always the same.
15a. \$93.49; \$96.80; \$7.55
$\mathbf{1 5 b}$. The median and mean prices indicate the midprice and average price, respectively. The standard deviation indicates the amount of variation in prices. The median tells trend of prices better than the mean, which can be affected by outliers.

LESSON 3.2
1a. $\frac{3}{2}=1.5$
1b. $-\frac{2}{3} \approx-0.67$
3a. $y=14.3$
3b. $x=6.5625$
3c. $a=-24$
3d. $b=-0.25$

1c. -55

5 a. The equations have the same constant, -2 . The lines share the same y-intercept. The lines are perpendicular, and their slopes are reciprocals with opposite signs.
$5 \mathbf{b}$. The equations have the same x-coefficient, -1.5 .
The lines have the same slope. The lines are parallel.
7a. Answer depends on data points used.
Approximately 1.47 volts/battery.
7b. Answers will vary. The voltage increases by about 1.47 volts for every additional battery.

7c. Yes. There is no voltage produced from zero batteries, so the y-intercept should be 0 .
9a. $\$ 20,497$; $\$ 17,109 \quad$ 9b. $\$ 847$ per year
9c. in her 17th year
11a. Answer depends on data points used. Each additional ticket sold brings in about $\$ 7.62$ more in revenue.
11b. Answers will vary. Use points that are not too close together.
13a. $-10+3 x \quad$ 13b. $1-11 x \quad$ 13c. $28.59+5.4 x$
15a. 71.7 beats/min
15b. 6.47 beats/min. The majority of the data falls within 6.47 beats $/ \mathrm{min}$ of the mean.
17a. $a>0, b<0$
17b. $a<0, b>0$
17c. $a>0, b=0$
17d. $a=0, b<0$

LESSON 3.3

1a. $y=1+\frac{2}{3}(x-4)$
1b. $y=2-\frac{1}{5}(x-1)$

3a. $u_{n}=31$
3b. $t=-41.5$
3c. $x=1.5$
5 5.

possible answer: $(-3,0),(-3,2)$
5b. undefined 5c. $x=3$
5d. Hint: What can you say about the slope and the x - and y-intercepts of a vertical line?
7a. The y-intercept is about 1.7 ; $(5,4.6)$;
$\hat{y}=1.7+0.58 x$.
7b. The y-intercept is about 7.5; (5, 3.75);
$\hat{y}=7.5-0.75 x$.
7c. The y-intercept is about 8.6 ; $(5,3.9)$; $\hat{y}=8.6$ -0.94x.
9a. possible answer: [145, 200, 5, 40, 52, 1]
9b. possible answer: $\hat{y}=0.26 x+0.71$
9c. On average, a student's forearm length increases by
0.26 cm for each additional 1 cm of height.

9d. The y-intercept is meaningless because a height of
0 cm should not predict a forearm length of 0.71 cm .
The domain should be specified.
9e. $189.58 \mathrm{~cm} ; 41.79 \mathrm{~cm}$
11. 102

13a. 16
13b. Add 19.5 and any three numbers greater than 19.5.

LESSON 3.4

1a. 17, 17, 17
1b. 17, 16, 17
1c. $16,15,16$
1d. 13, 12, 13
3. $y=0.9+0.75(x-14.4)$
5. $y=3.15+4.7 x$
7. Answers will vary. If the residuals are small and have no pattern, as shown by the box plot and histogram, then the model is good.

9a. $\hat{y}=997.12-0.389 x$
$\mathbf{9 b}$. The world record for the 1 -mile run is reduced by 0.389 s every year.

9c. 3:57.014. This prediction is 2.3 s faster than Roger Bannister actually ran.
9d. 4:27.745. This prediction is about 3.2 s slower than Walter Slade actually ran.
9e. This suggests that a world record for the mile in the year 0 would have been about 16.6 minutes. This is doubtful because a fast walker can walk a mile in about 15 minutes. The data are only approximately linear and only over a limited domain.
9f. A record of $3: 43.13,3.61$ s slower than predicted was set by Hicham El Guerrouj in 1999.

11a.

11b. $M_{1}(1925,17.1), M_{2}$ (1928.5, 22.05), $M_{3}(1932,23.3)$
11c. $\widehat{D}=-1687.83+0.886 t$
11d. For each additional year, the number of deaths by automobile increases by 0.886 per hundred thousand population.
11e. Answers might include the fact that the United States was in the Great Depression and fewer people were driving.
11f. It probably would not be a good idea to extrapolate because a lot has changed in the automotive industry in the past 75 years. Many safety features
are now standard.
13. $y=7-3 x$
15. $2.3 \mathrm{~g}, 3.0 \mathrm{~g}, 3.0 \mathrm{~g}, 3.4 \mathrm{~g}, 3.6 \mathrm{~g}, 3.9 \mathrm{~g}$

LESSON 3.5

1a. -0.2
1b. -0.4
1c. 0.6

3a. $-2.74 ;-1.2 ;-0.56 ;-0.42 ;-0.18 ; 0.66 ; 2.3$;
$1.74 ; 0.98 ; 0.02 ;-0.84 ;-0.3 ;-0.26 ;-0.22$;
-0.78; $-1.24 ;-0.536$
3b. 1.22 yr
3c. In general, the life expectancy values predicted by the median-median line will be within 1.23 yr of the actual data values.

5a. Let x represent age in years, and let y represent height in $\mathrm{cm} ; \hat{y}=82.5+5.6 x$.

[4, 14, 1, 100, 160, 10]
5b. $-1.3,-0.4,0.3,0.8,0.8,0.3,-0.4,-0.4,1.1$
5c. 0.83 cm
5d. In general, the mean height of boys ages 5 to 13 will be within 0.83 cm of the values predicted by the median-median line.
5e. between 165.7 cm and 167.3 cm
7. $\hat{y}=29.8+2.4 x$
9. Alex's method: 3.67; root mean square error method: approximately 3.21 . Both methods give answers around 3, so Alex's method could be used as an alternate measure of accuracy.
11a.

11b. The points are nearly linear because the sum of electoral votes should be 538. The data are not perfectly linear because in a few of the elections, candidates other than the Democrats and Republicans received some electoral votes.
11c.

The points above the line are the elections in which the Republican Party's presidential candidate won. 11d. $-218,31,250,-30,219,255,156,-102,-111$, 1

A negative residual means that the Democratic Party's presidential candidate won.
11e. a close election
13. Hint: The difference between the 2nd and 6th values is 12 .

15a. $u_{0}=30$ and $u_{n}=u_{n-1}\left(1+\frac{0.07}{12}\right)+30$ where $n \geq 1$
15b. i. deposited: \$360; interest: \$11.78
15b. ii. deposited: \$3,600; interest: \$1,592.54
15b. iii. deposited: \$9,000; interest: \$15,302.15
15b. iv. deposited: \$18,000; interest: \$145,442.13
15c. Sample answer: If you earn compound interest, in the long run the interest earned will far exceed the total amount deposited.

LESSON 3.6

1a. $(1.8,-11.6)$
1b. (3.7, 31.9)
3. $y=5+0.4(x-1)$

5a. (4.125, -10.625)
5b. (-3.16, 8.27)
5c. They intersect at every point; they are the same line.
7a. No. At $x=25$, the cost line is above the income line.
7b. Yes. The profit is approximately $\$ 120$.
7c. About 120 pogo sticks. Look for the point where the cost and income lines intersect.
9a. Phrequent Phoner Plan: $y=20+17([x]-1)$; Small Business Plan: $y=50+11([x]-1)$
9b.

[$0,10,1,0,200,20$]
9c. If the time of the phone call is less than 6 min , PPP is less expensive. For times between 6 and 7 min , the plans charge the same rate. If the time of the phone call is greater than or equal to 7 min , PPP is more expensive than SBP. (You could look at the calculator table to see these results.)
11a. Let l represent length in centimeters, and let w represent width in centimeters; $2 l+2 w=44$,
$l=2+2 w ; w=\frac{20}{3} \mathrm{~cm}, l=\frac{46}{3} \mathrm{~cm}$.
11b. Let l represent length of leg in centimeters, and let b represent length of base in centimeters; $2 l+b=40, b$ $=l-2 ; l=14 \mathrm{~cm}, b=12 \mathrm{~cm}$.
11c. Let f represent temperature in degrees Fahrenheit, and let c represent temperature in degrees Celsius; $f=$ $3 c-0.4, f=1.8 c+32 ; c=27^{\circ} \mathrm{C}, f=80.6^{\circ} \mathrm{F}$.
13a. 51
13b. 3rd bin
13c. 35%

LESSON 3.7

1a. $w=11+r$
1b. $h=\frac{18-2 p}{3}=6-\frac{2}{3} p$
1c. $r=w-11$
1d. $p=\frac{18-3 h}{2}=9-\frac{3}{2} p$

3a. $5 x-2 y=12$; passes through the point of intersection of the original pair
3b. $-4 y=8$; passes through the point of intersection of the original pair and is horizontal
5a. $\left(-\frac{97}{182}, \frac{19}{7}\right) \approx(-0.5330,2.7143)$
5b. $\left(8,-\frac{5}{2}\right) \approx(8,-2.5)$
5c. $\left(\frac{186}{59},-\frac{4}{59}\right) \approx(3.1525,-0.0678)$
5d. $n=26, s=-71 \quad$ 5e. $d=-18, f=-49$
5f. $\left(\frac{44}{7},-\frac{95}{14}\right) \approx(6.2857,-6.7857)$
5g. no solution
7. $80^{\circ} \mathrm{F}$
9. Hint: Write two equations that pass through the point (-1.4, 3.6).
11a. $A=\frac{d^{2}}{2}$
11b. $P=I^{2} R \quad$ 11c. $A=\frac{C^{2}}{4 \pi}$
13a. true
13b. false; $(x-4)(x+4)$

15a.

15b. $\hat{y}=\frac{213}{8000} x-51.78$ or $\hat{y}=0.027 x-51.78$
$\mathbf{1 5 c}$. If the same trend continues, the cost of gasoline in 2010 will be $\$ 1.74$. Answers will vary.
17a. i. 768, -1024; ii. 52, 61; iii. 32.75, 34.5
17b. i. geometric; ii. other; iii. arithmetic
17c. i. $u_{1}=243$ and $u_{n}=\left(-\frac{4}{3}\right) u_{n-1}$ where $n \geq 2$
17c. iii. $u_{1}=24$ and $u_{n}=u_{n-1}+1.75$ where $n \geq 2$
17d. iii. $u_{n}=1.75 n+22.25$

CHAPTER 3 REMEW

1. $-\frac{975}{19}$

3a. approximately (19.9, 740.0)
3b. approximately (177.0, 740.0)
5a. Poor fit; there are too many points above the line.

5b. Reasonably good fit; the points are well-distributed above and below the line, and not clumped.
5c. Poor fit; there are an equal number of points above and below the line, but they are clumped to the left and to the right, respectively.
7a. $(1,0)$
7b. every point; same line
7c. No intersection; the lines are parallel.
9a.

9b. $\hat{y}=2088+1.7 x$
9c. 1.7; for every additional year, the tower leans another 1.7 mm .
9d. 5474.4 mm
9e. Approximately 5.3 mm ; the prediction in 9d is probably accurate within 5.3 mm . So the actual value will probably be between 5469.1 and 5479.7.
9f. $1173 \leq$ domain ≤ 1992 (year built to year retrofit began); $0 \leq$ range $\leq 5474.4 \mathrm{~mm}$
11a. geometric; curved; $4,12,36,108,324$
11b. shifted geometric; curved; 20, 47, 101, 209, 425
13a. Possible answer: $u_{2005}=6486915022$ and $u_{n}=(1+0.015) u_{n-1}$ where $n \geq 2006$. The sequence is geometric.
13b. possible answer: $6,988,249,788$ people
13c. On January 1, 2035, the population will be just above 10 billion. So the population will first exceed 10 billion late in 2034.
13d. Answers will vary. An increasing geometric sequence has no limit. But the model will not work for the distant future because there is a physical limit to how many people will fit on Earth.
15.

15a. skewed left
15b. 12
15c. 6
15d. 50\%; 25\%; 0\%
17a. $\left(\frac{110}{71},-\frac{53}{213}\right)$
17c. $\left(\frac{46}{13}, \frac{9}{26}\right)$

19a. $u_{1}=6$ and $u_{n}=u_{n-1}+7$ where $n \geq 1$
19b. $y=6+7 x$
19c. The slope is 7 . The slope of the line is the same as the common difference of the sequence.
19d. 230; It's probably easier to use the equation from 19b.

LESSON 4.1

1a.

$1 b$.

3a. A
3b. C
3c. D
3d. B
5. Hint: Consider the rate and direction of change (increasing, decreasing, constant) of the various segments of the graph.
7a. Time in years is the independent variable; the amount of money in dollars is the dependent variable. The graph will be a series of discontinuous segments.

7b. Time in years is the independent variable; the amount of money in dollars is the dependent variable. The graph will be a continuous horizontal segment because the amount never changes.

7c. Foot length in inches is the independent variable; shoe size is the dependent variable. The graph will be a series of discontinuous horizontal segments because shoe sizes are discrete.

7d. Time in hours is the independent variable; distance in miles is the dependent variable. The graph will be continuous because distance is changing continuously over time.

7e. The day of the month is the independent variable; the maximum temperature in degrees Fahrenheit is the dependent variable. The graph will be discrete points because there is just one temperature reading per day.

9a. Car A speeds up quickly at first and then less quickly until it reaches $60 \mathrm{mi} / \mathrm{h}$. Car B speeds up slowly at first and then quickly until it reaches 60 mi / h.
9b. Car A will be in the lead because it is always going faster than Car B, which means it has covered more distance.
11a. Let x represent the number of pictures and let y represent the amount of money (either cost or income) in dollars; $y=155+15 x$.
11b. $y=27 x$

11c. 13 pictures
13a. $3 x+5 y=-9 \quad$ 13b. $6 x-3 y=21$
13c. $x=2, y=-3 \quad$ 13d. $x=2, y=-3, z=1$

LESSON 4.2

1a. Function; each x-value has only one y-value.
1b. Not a function; there are x -values that are paired with two y-values.
1c. Function; each x-value has only one y-value.
3. B

5a. The price of the calculator is the independent variable; function.
5b. The time the money has been in the bank is the independent variable; function.
$5 \mathbf{c}$. The amount of time since your last haircut is the independent variable; function.
5d. The distance you have driven since your last fillup is the independent variable; function.
7a, c, d.

7b. 20.8
9a. possible answer:

7d. -4
9b. possible answer:

9c.

11. Let x represent the time since Kendall started moving and y represent his distance from the motion sensor. The graph is a function; Kendall can be at only one position at each moment in time, so there is only one y-value for each x-value.
13a. 54 diagonals
13b. 20 sides
15. Hint: Determine how many students fall into each quartile, and an average value for each quartile.

17a. possible answer:

17b. possible answer:

17c. possible answer:

LESSON 4.3

1. $y=-3+\frac{2}{3}(x-5)$

3a. $-2(x+3)$ or $-2 x-6$
3b. $-3+(-2)(x-2)$ or $-2 x+1$
3c. $5+(-2)(x+1)$ or $-2 x+3$
5a. $y=-3+4.7 x$
5b. $y=-2.8(x-2)$
5c. $y=4-(x+1.5)$ or $y=2.5-x$
7. $y=47-6.3(x-3)$
9a. $(1400,733 . \overline{3})$
9b. $(x+400, y+233 . \overline{3})$

9c. 20 steps
11a. 12,500; The original value of the equipment is \$12,500.

11b. 10; After 10 years the equipment has no value.
11c. -1250 ; Every year the value of the equipment decreases by $\$ 1250$.
$\begin{array}{ll}\text { 11d. } y=12500-1250 x & \text { 11e. after } 4.8 \mathrm{yr}\end{array}$
13. $x=15$

13b. $x=31$
13c. $x=-21$
13d. $x=17.6$

LESSON 4.4

1a. $y=x^{2}+2$
1b. $y=x^{2}-6$
1c. $y=(x-4)^{2}$
1d. $y=(x+8)^{2}$

3a. translated down 3 units
3b. translated up 4 units
3c. translated right 2 units
3d. translated left 4 units
5a. $x=2$ or $x=-2$
5b. $x=4$ or $x=-4$
5c. $x=7$ or $x=-3$
7a. $y=(x-5)^{2}-3$
7b. $(5,-3)$
7c. $(6,-2),(4,-2),(7,1),(3,1)$. If (x, y) are the coordinates of any point on the black parabola, then the coordinates of the corresponding point on the red parabola are $(x+5, y-3)$.
7d. 1 unit; 4 units
9 a.

Number of teams (x)	1	2	3	4	5	6	7	8	9

$\mathbf{9 b}$. The points appear to be part of a parabola.

[$0,12,1,0,100,10$]

9c. $y=(x-0.5)^{2}-0.25$
9d. 870 games
11a.

11b.

13a. Let m represent the miles driven and let C represent the cost of the one-day rental.
Mertz: $C=32+0.1 m$; Saver: $C=24+0.18 m$; Luxury: $C=51$.
13b.

13c. If you plan to drive less than 100 miles, then rent Saver. At exactly 100 miles, Mertz and Saver are the same. If you plan to drive between 100 miles and 190 miles, then rent Mertz. At exactly 190 miles, Mertz and Luxury are the same. If you plan to drive more than 190 miles, then rent Luxury.
15. Answers will vary.

LESSON 4.5

1a. $y=\sqrt{x}+3$
1b. $y=\sqrt{x+5}$
1c. $y=\sqrt{x+5}+2$
1d. $y=\sqrt{x-3}+1$

1e. $y=\sqrt{x-1}-4$
3a. $y=-\sqrt{x}$
3b. $y=-\sqrt{x}-3$
3c. $y=-\sqrt{x+6}+5$
3d. $y=\sqrt{-x}$
3e. $y=\sqrt{-(x-2)}-3$, or $y=\sqrt{-x+2}-3$
5a. possible answers: $(-4,-2),(-3,-1)$, and $(0,0)$

5b. $y=\sqrt{x+4}-2$

5c. $y=-\sqrt{x-2}+3$

[-9.4, 9.4, 1, -6.2, 6.2, 1] [-9.4, 9.4, 1, - 6.2, 6.2, 1] 7a. Neither parabola passes the vertical line test.
7b. i. $y= \pm \sqrt{x+4}$
7b. ii. $y= \pm \sqrt{x}+2$
7c. i. $y^{2}=x+4$
7c. ii. $(y-2)^{2}=x$
9a. $y=-x^{2}$
9b. $y=-x^{2}+2$
9c. $y=-(x-6)^{2}$
9d. $y=-(x-6)^{2}-3$
11a. $S=5.5 \sqrt{0.7 D}$
11b.

11c. approximately $36 \mathrm{mi} / \mathrm{h}$
11d. $D=\frac{1}{0.7}\left(\frac{S}{5.5}\right)^{2}$; the minimum braking distance, when the speed is known.
11e.

[0, 60, 5, 0, 100, 5]
It is a parabola, but the negative half is not used because the distance cannot be negative.
11f. approximately 199.5 ft
13a. $x=293$
13b. no solution
13c. $x=7$ or $x=-3$
13d. $x=-13$
15a. $y=\frac{1}{2} x+5$
15b. $y=\frac{1}{2}(x-8)+5$

15c. $y=\left(\frac{1}{2} x+5\right)-4$ or $y+4=\frac{1}{2} x+5$
15d. Both equations are equivalent to $y=\frac{1}{2} x+1$.

LESSON 4.6

1a. $y=|x|+2$
1b. $y=|x|-5$
1c. $y=|x+4|$
1d. $y=|x-3|$
1e. $y=|x|-1$
1f. $y=|x-4|+1$
1g. $y=|x+5|-3$
1h. $y=3|x-6|$
1i. $y=-\left|\frac{x}{4}\right|$
1j. $y=(x-5)^{2}$

1k. $y=-\frac{1}{2}|x+4|$
11. $y=-|x+4|+3$

1m. $y=-(x+3)^{2}+5$
1n. $y= \pm \sqrt{x-4}+4$
1p. $y=-2\left|\frac{x-3}{3}\right|$
3a. $y=2(x-5)^{2}-3$
3b. $y=2\left|\frac{x+1}{3}\right|-5$
3c. $y=-2 \sqrt{\frac{x-6}{-3}}-7$
5a. 1 and 7; $x=1$ and $x=7$
5b. $x=-8$ and $x=2$

[-9.4, 9.4, 1, -6.2, 6.2, 1]
7a. $(6,-2)$
7b. $(2,-3)$ and $(8,-3)$
7c. $(2,-2)$ and $(8,-2)$
9a. possible answers: $x=4.7$ or $y=5$
9b. possible answers: $y=4\left(\frac{x-4.7}{1.9}\right)^{2}+5$ or $\left(\frac{y-5}{4}\right)^{2}=\frac{x-4.7}{-1.9}$
9c. There are at least two parabolas. One is oriented horizontally, and another is oriented vertically.

11a.

11 b.

11c.

13a. $\bar{x}=83.75, s=7.45$
13b. $\bar{x}=89.75, s=7.45$
13c. By adding 6 points to each rating, the mean increases by 6, but the standard deviation remains the same.

LESSON 4.7

1. 2nd row: Reflection, Across x-axis, N/A; 3rd row: Stretch, Horizontal, 4; 4th row: Shrink, Vertical, 0.4; 5th row: Translation, Right, 2; 6th row: Reflection, Across y-axis, N/A

3a.

3b.

3c.

5.

$y= \pm \sqrt{1-x^{2}}+2$
$y= \pm \sqrt{1-(x+3)^{2}}$
or $x^{2}+(y-2)^{2}=1$
or $(x+3)^{2}+y^{2}=1$
5c.

5d.

$y= \pm 2 \sqrt{1-x^{2}}$
$y= \pm \sqrt{1-\left(\frac{x}{2}\right)^{2}}$
or $x^{2}+\left(\frac{y}{2}\right)^{2}=1$
5b.

$5 c$.
or $\frac{x^{2}}{4}+y^{2}=1$

7a. $x^{2}+(2 y)^{2}=1$
7b. $(2 x)^{2}+y^{2}=1$
7c. $\left(\frac{x}{2}\right)^{2}+(2 y)^{2}=1$
9a.

$$
\begin{aligned}
& {[-4.7,4.7,1,-3.1,3.1,1]} \\
& (0,0) \text { and }(1,1)
\end{aligned}
$$

$\mathbf{9 b}$. The rectangle has width 1 and height 1 . The width is the difference in x-coordinates, and the height is the difference in y-coordinates.
9c.

[-4.7, 4.7, 1, -3.1, 3.1, 1] $(0,0)$ and $(4,2)$
9d. The rectangle has width 4 and height 2 . The width is the difference in x-coordinates, and the height is the difference in y-coordinates.
9 e .

[-9.4, 9.4, 1, -6.2, 6.2, 1] $(1,3)$ and $(5,5)$
9f. The rectangle has width 4 and height 2 . The difference in x-coordinates is 4 , and the difference in y-coordinates is 2 .
$\mathbf{9 g}$. The x-coordinate is the location of the right endpoint, and the y-coordinate is the location of the top of the transformed semicircle.
11. $625,1562.5,3906.25$

13a.

[$0,80,10,0,350,50$]

13b. Sample answer: $\hat{y}=0.07(x-3)^{2}+21$.

[0, 80, 10, 0, 350, 50]
13c. For the sample answer: residuals: $-5.43,0.77$, $0.97,-0.83,-2.63,-0.43,7.77 ; s=4.45$
13d. approximately 221 ft
13e. 13 d should be correct $\pm 4.45 \mathrm{ft}$.
15a. $y=-3 x-1$

15b. $y=-3 x+1$

15c. $y=3 x-1$

15d. The two lines are parallel.

LESSON 4.8

1a. 6
1b. 7
1c. 6
1d. 18

3a. approximately $1.5 \mathrm{~m} / \mathrm{s}$
3b. approximately $12 \mathrm{~L} / \mathrm{min}$
3c. approximately $15 \mathrm{~L} / \mathrm{min}$
5a. $y=\left|(x-3)^{2}-1\right|$
5b. $f(x)=|x|$ and $g(x)=(x-3)^{2}-1$
7a.

7b. approximately 41
7c. $B=\frac{2}{3}(A-12)+13$
7d. $C=\frac{9}{4}(B-20)+57$

7e. $C=\frac{9}{4}\left(\frac{2}{3} A+5\right)+12=1.5 A+23.25$
9a. 2
9b. -1
9c. $g(f(x))=x$
9d. $f(g(x))=x$

9e. The two functions "undo" the effects of each other and thus give back the original value.
11. Hint: Use two points to find both parabola and semicircle equations for the curve. Then substitute a third point into your equations and decide which is most accurate.
13a. $x=-5$ or $x=13$
13b. $x=-1$ or $x=23$
13c. $x=64$
13d. $x= \pm \sqrt{1.5} \approx \pm 1.22$
15a. $\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1$ or $x^{2}+y^{2}=9$
15b.

CHAPIER4REVEW

1. Sample answer: For a time there are no pops. Then the popping rate slowly increases. When the popping reaches a furious intensity, it seems to level out. Then the number of pops per second drops quickly until the last pop is heard.

3 3.

3c.

3b.

3d.

$5 a$.

5c.

5 b.

5d.

5 .

$5 f$.

7a. $y=\frac{2}{3} x-2$
7b. $y= \pm \sqrt{x+3}-1$
7c. $y= \pm \sqrt{-(x-2)^{2}+1}$
9a. Number of passengers: 17000, 16000, 15000, 14000, 13000, 12000, 11000, 10000; Revenue: 18700, 19200, 19500, 19600, 19200, 18700, 18000
9b.

[0.8, 2, 0.1, 17000, 20000, 1000]
9c. (1.40, 19600). By charging $\$ 1.40$ per ride, the company achieves the maximum revenue, $\$ 19,600$.
9d. $\hat{y}=-10000(x-1.4)^{2}+19600$
9d. i. $\$ 16,000$
9d. ii. \$0 or \$2.80

CHAPTER $5 \cdot$ CHAPTER 5 CHAPTER $5 \cdot$ CHAPTER

LESSON 5.1

1a. $f(5) \approx 3.52738$
1b. $g(14) \approx 19,528.32$
1c. $h(24) \approx 22.9242$
1d. $j(37) \approx 3332.20$
3a. $f(0)=125, f(1)=75, f(2)=45 ; u_{0}=125$ and $u_{n}=0.6 u_{n-1}$ where $n \geq 1$
3b. $f(0)=3, f(1)=6, f(2)=12$; $u_{0}=3$ and $u_{n}=2 u_{n-1}$ where $n \geq 1$
5a. $u_{0}=1.151$ and $u_{n}=(1+0.015) u_{n-1}$ where $n \geq 1$

5b.

Year	Population (in billions)
1991	1.151
1992	1.168
1993	1.186
1994	1.204
1995	1.222
1996	1.240
1997	1.259
1998	1.277
1999	1.297
2000	1.316

5c. Let x represent the number of years since 1991, and let y represent the population in billions. $y=1.151(1+0.015)^{x}$
5d. $y=1.151(1+0.015)^{10} \approx 1.336$; the equation gives a population that is greater than the actual population. Sample answer: the growth rate of China's population has slowed since 1991.

7a-d.

$[-5,5,1,-1,9,1]$
7e. As the base increases, the graph becomes steeper. The curves all intersect the y-axis at $(0,1)$.
7f. The graph of $y=6^{x}$ should be the steepest
of all of these. It will contain the points $(0,1)$ and (1,6).

9e. As the base increases, the graph flattens out. The curves all intersect the y-axis at $(0,1)$.

9f. The graph of $y=0.1^{X}$ should be the steepest of all of these. It will contain the points $(0,1)$ and $(-1,10)$.

11a. $\frac{27}{30}=0.9$ 11b. $f(x)=30(0.9)^{x}$
11c.

11d. $g(4)=30$
11e. possible answer: $g(x)=30(0.9)^{x-4}$
11f. Hint: Think about what x_{1}, y_{1}, and b represent.
13a. Let x represent time in seconds, and let y represent distance in meters.

13b. domain: $0 \leq x \leq 7$; range: $3 \leq y \leq 10$
13c. $y=2|x-3.5|+3$
15a-c. Hint: One way to construct the circles is to duplicate circle M and change the radius in order to get the correct area.
15d. Hint: Recall that the area of a circle is given by the formula $A=\pi r^{2}$.

LESSON 5.2
1a. $\frac{1}{125}$
1b. -36
1d. $\frac{1}{144}$
1e. $\frac{16}{9}$
1c. $-\frac{1}{81}$
1f. $\frac{7}{2}$

3a. false
3b. false
3c. false
3d. true
5a. $x \approx 3.27$
5b. $x=784$
5c. $x \approx 0.16$
5d. $x \approx 0.50$

5e. $x \approx 1.07$
5f. $x=1$
7. Hint: Is $(2+3)^{2}$ equivalent to $2^{2}+3^{3}$? Is $(2+3)^{1}$ equivalent to $2^{1}+3^{1}$? Is $(2-2)^{3}$ equivalent to $2^{3}+(-2)^{3}$?
Is $(2-2)^{2}$ equivalent to $2^{2}+(-2)^{2}$?
9a-d.

9e. Sample answer: As the exponents increase, the graphs get narrower horizontally. The even-power functions are U-shaped and always in the first and second quadrants, whereas the odd-power functions have only the right half of the U , with the left half pointed down in the third quadrant. They all pass through $(0,0)$ and $(1,1)$.
9f. Sample answer: The graph of $y=x^{6}$ will be U-shaped, will be narrower than $y=x^{4}$, and will pass through $(0,0)$, $(1,1),(-1,1),(2,64)$, and $(-2,64)$.

[-4.7, 4.7, 1, -6.2, 6.2, 1]
9g. Sample answer: The graph of $y=x^{7}$ will fall in the first and third quadrants, will be narrower than $y=x^{3}$ or $y=x^{5}$, and will pass through $(0,0),(1,1),(-1,-1)$, $(2,128)$, and $(-2,-128)$.

[-4.7, 4.7, 1, -6.2, 6.2, 1]
11a. $47(0.9)(0.9)^{x-1}=47(0.9)^{1}(0.9)^{x-1}=47(0.9)^{X}$ by the product property of exponents; $42.3(0.9)^{x-1}$.
11b. $38.07(0.9)^{x-2}$
11c. The coefficients are equal to the values of Y1 corresponding to the number subtracted from x in the exponent. If (x_{1}, y_{1}) is on the curve, then any equation $y=y_{1} \cdot b^{\left(x-x_{1}\right)}$ is an exponential equation for the curve.
13a. $x=7$
13b. $x=-\frac{1}{2}$
13c. $x=0$
15a. $x=7$
15b. $x=-4$
15c. $x=4$
15d. $x=4.61$

17a. Let x represent time in seconds, and let y represent distance in meters.
$\mathbf{1 7 b}$. All you need is the slope of the medianmedian line, which is determined by $M_{1}(8,1.6)$ and $M_{3}(31,6.2)$. The slope is 0.2 . The speed is approximately $0.2 \mathrm{~m} / \mathrm{s}$.

LESSON 5.3

1. a-e-j; b-d-g; c-i; f-h

3a. $a^{1 / 6}$
3b. $b^{4 / 5}, b^{8 / 10}$, or $b^{0.8}$
3c. $c^{-1 / 2}$ or $c^{-0.5}$
3d. $d^{7 / 5}$ or $d^{1.4}$
5. $490 \mathrm{~W} / \mathrm{cm}^{2}$

7a-d.

$$
[-4.7,4.7,1,-3.1,3.1,1]
$$

7e. Each graph is steeper and less curved than the previous one. All of the functions go through $(0,0)$ and $(1,1)$.
7f. $y=x^{5 / 4}$ should be steeper and curve upward.

[-4.7, 4.7, 1, -3.1, 3.1, 1]

9a. exponential
9c. exponential
11a. $x=\left(\frac{13}{9}\right)^{5} \approx 6.29$
9b. neither
9d. power

11c. $x=\left(\frac{\sqrt{35}}{4}\right)^{3 / 2} \approx 1.80$
13a. Hint: Solve for k.
13c. 8.2 L
15a. $y=(x+4)^{2}$
15c. $y=-(x+5)^{2}+2$
13b. $k=(40)(12.3)=492$

15e. $y=\sqrt{x+3}$
13d. 32.8 mm Hg

15g. $y=\sqrt{x+2}+1$
15b. $y=x^{2}+1$

17a. $u_{1}=20$ and $u_{n}=1.2 u_{n-1}$ where $n \geq 2$

17b. $u_{9} \approx 86$; about 86 rats
17c. Let x represent the year number, and let y represent the number of rats. $y=20(1.2)^{x-1}$

LESSON 5.4

1a. $x=50^{1 / 5} \approx 2.187$
1b. $x=29.791$

1c. no real solution
3a. $9 x^{4}$
3b. $8 x^{6}$
3c. $216 x^{-18}$

5a. She must replace y with $y-7$ and y_{1} with $y_{1}-7 ; y-7=\left(y_{1}-7\right) \cdot b^{x-x_{1}}$.
5b. $y-7=(105-7) b^{x-1} ;\left(\frac{y-7}{98}\right)^{1 /(x-1)}=b$
5c.

x	0	2	3	4	5	6
y	200	57	31	18	14	12
b	0.508	0.510	0.495	0.482	0.517	0.552

5d. Possible answer: The mean of the b-values is 0.511. $y=7+98(0.511)^{x-1}$.

[$-1,7,1,0,210,10$]
7a. 68.63 tons
7b. 63.75 ft
9a. 1.9 g
9b. 12.8\%

11a. 0.9534 , or 95.34% per year
11b. 6.6 g
11c. $y=6.6(0.9534)^{x}$
11d. 0.6 g
11e. 14.5 yr
13. $x=-4.5, y=2, z=2.75$

LESSON 5.5

1. $(-3,-2),(-1,0),(2,2),(6,4)$
2. Graph c is the inverse because the x - and y-coordinates have been switched from the original graph so that the graphs are symmetric across line $y=x$.
5a. $f(7)=4 ; g(4)=7$
5b. They might be inverse functions.
5c. $f(1)=-2 ; g(-2)=5$
5d. They are not inverse functions, at least not over their entire domains and ranges.
5e. $f(x)$ for $x \geq 3$ and $g(x)$ for $x \geq-4$ are inverse functions.

7a.

7b. The inverse function from 6 b should be the same as the function drawn by the calculator.
7c. Find the composition of $f^{-1}(f(x))$. If it equals x, you have the correct inverse.
9a. i. $f^{-1}(x)=\frac{x+140}{6.34}$
9a. ii. $f\left(f^{-1}(15.75)\right)=15.75$
9a. iii. $f^{-1}(f(15.75))=15.75$
9a. iv. $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$
9b. i. $f^{-1}(x)=\frac{x-32}{1.8}$
9b. ii. $f\left(f^{-1}(15.75)\right)=15.75$
9b. iii. $f^{-1}(f(15.75))=15.75$
9b. iv. $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$
11a. $y=100-C$
11b. Solve $F=1.8 C+32$ for C and substitute into $y=100-C$ to get $y=\frac{F-212}{-1.8}=\frac{212-F}{1.8}$.
13a. $c(x)=7.18+3.98 x$, where c is the cost and x is the number of thousand gallons.
13b. \$39.02
13c. $g(x)=\frac{x-7.18}{3.98}$, where g is the number of thousands of gallons and x is the cost.
13d. 12,000 gal
13e. Hint: The compositions $g(c(x))$ and $c(g(x))$ should both be equivalent to x.
13f. about \$13
13g. Hint: The product of length, width, and height should be equivalent to the volume of water, in cubic inches, saved in a month.
15. Hint: Solve $12.6(b)^{3}=42.525$ to find the base. Then use the point-ratio form.
17. Hint: Consider a vertically oriented parabola and a horizontally oriented parabola.

3c. $x=\log _{35} 8 ; x \approx 0.5849$
3d. $x=\log _{0.4} 5 ; x \approx-1.7565$
3e. $x=\log _{0.8} 0.03 ; x \approx 15.7144$
3f. $x=\log _{17} 0.5 ; x \approx-0.2447$
5a. false; $x=\log _{6} 12$
5b. false; $2^{X}=5$
5c. false; $x=\frac{\log 5.5}{\log 3}$
5d. false; $x=\log _{3} 7$
7a. 1980
7b. 13\%
7c. 5.6 yr
9a. $y=88.7(1.0077)^{X} \quad$ 9b. 23 or 24 clicks
11a.

11b. 3.03, $0.71,-2.11,-6.43,-9.16,0.02,1.50$, $-0.52,-2.05,-3.17,-0.99,-0.51,-0.43$
11c. 3.78 million riders. Most data are within
3.78 million of the predicted number.

11d. 126.8 million riders
13a. $y+1=x-3$ or $y=x-4$
13b. $y+4=(x+5)^{2}$ or $y=(x+5)^{2}-4$
13c. $y-2=|x+6|$ or $y=|x+6|+2$
13d. $y-7=\sqrt{x-2}$ or $y=\sqrt{x-2}+7$
15a.

They are parallel.
15b. Possible answer: $A(0,-3) ; P(1,1) ; Q(4,3)$
15c. Possible answer: Translate 1 unit right and 4 units up. $2(x-1)-3(y-4)=9$.
15d. Possible answer: Translate 4 units right and 6 units up. $2(x-4)-3(y-6)=9$.
15e. Hint: Distribute and combine like terms. You should find that the equations are equivalent.

LESSON 5.7

1a. $g^{h} \cdot g^{k}$; product property of exponents
1b. log st; product property of logarithms
1c. $f^{w-\nu}$; quotient property of exponents
1d. $\log h-\log k$; quotient property of logarithms
1e. $j^{s t}$; power property of exponents

1f. $g \log b$; power property of logarithms
1g. $k^{m / n}$; definition of rational exponents
1h. $\log _{u} t$; change-of-base property
1i. w^{t+s}; product property of exponents
1j. $\frac{1}{p^{k}}$; definition of negative exponents
3a. $a \approx 1.763$
3b. $b \approx 1.3424$
3c. $c \approx 0.4210$
3d. $d \approx 2.6364$
3e. $e \approx 2.6364$
3f. $f \approx 0.4210$
3g. $c=f$ and $d=e$
3h. $\log \frac{a}{b}$

3i. When numbers with the same base are divided, the exponents are subtracted.
5a. true
5b. false; possible answer: $\log 5+\log 3=\log 15$
5c. true
5d. true
5e. false; possible answer: $\log 9-\log 3=\log 3$
5f. false; possible answer: $\log \sqrt{7}=\frac{1}{2} \log 7$
5g. false; possible answer: $\log 35=\log 5+\log 7$
5h. true
5i. false; possible answer: $\log 3-\log 4=\log \frac{3}{4}$ 5j. true
7a. $y=261.6\left(2^{x / 12}\right)$
7b.

Note	Frequency (Hz)	Note	Frequency (Hz)
C4	261.6	G	392.0
C\#	277.2	G\#	415.3
D	293.6	A	440.0
D\#	311.1	A\#	466.1
E	329.6	B	493.8
F	349.2	C5	523.2
F\#	370.0		

9a. $y=14.7(0.8022078)^{x}$

9b.

9c. $y=8.91 \mathrm{lb} / \mathrm{in} .2$
11. Hint: If more than one input value results in the same output value, then a function's inverse will not be a function. What does this mean about the graph of the function?

13a. The graph has been vertically stretched by a factor of 3 , then translated to the right 1 unit and down 4 units.

13b. The graph has been horizontally stretched by a factor of 3 , reflected across the x-axis, and translated up 2 units.

15a. Let h represent the length of time in hours, and let c represent the driver's cost in dollars. $c=14 h+20$. The domain is the set of possible values of the number of hours, $h>0$. The range is the set of possible values of the cost paid to the driver, $c>20$.
15b. Let c represent the driver's cost in dollars, and let a represent the agency's charge in dollars. $a=1.15 c+25$. The domain is the money paid to the driver if she had been booked directly, c. $c>20$. The range is the amount charged by the agency, $a . a>48$.
15c. $a=1.15(14 h+20)+25$, or $a=16.1 h+48$

LESSON 5.8

1a. $\log \left(10^{n+p}\right)=\log \left(\left(10^{n}\right)\left(10^{p}\right)\right)$
$(n+p) \log 10=\log 10^{n}+\log 10^{p}$
$(n+p) \log 10=n \log 10+p \log 10$
$(n+p) \log 10=(n+p) \log 10$
1b. $\log \left(\frac{10^{d}}{10^{e}}\right)=\log \left(10^{d-e}\right)$
$\log 10^{d}-\log 10^{e}=\log \left(10^{d-e}\right)$
$d \log 10-e \log 10=(d-e) \log 10$
$(d-e) \log 10=(d-e) \log 10$
3. about 195.9 mo or about 16 yr 4 mo

5a. $f(20) \approx 133.28$; After 20 days 133 games have been sold.
5b. $f(80) \approx 7969.17$; After 80 days 7969 games have been sold.
5c. $x=72.09$; After 72 days 6000 games have been sold.

5d. $\frac{12000}{1+499(1.09)^{-x}}=6000 ; 2=1+499(1.09)^{-x}$; $1=499(1.09)^{-x} ; 0.002=(1.09)^{-x}$;
$\log (0.002)=\log (1.09)^{-x} ; \log 0.002=-x \log 1.09 ;$
$x=-\frac{\log 0.002}{\log 1.09} \approx 72.1$
5e.

[0, 500, 100, 0, 15000, 1000]
Sample answer: The number of games sold starts out increasing slowly, then speeds up, and then slow down as everyone who wants the game has purchased one.
7a.

$$
[-16,180,10,-5,60,5]
$$

7b. $(\log x, y)$ is a linear graph.

7c. $y=6+20 x ; \hat{y}=6+20 \log x$
7d.

$$
[-16,180,10,-10,60,5]
$$

Sample answer: Yes; the graph shows that the equation is a good model for the data.
9a. The data are the most linear when viewed as ($\log ($ height $), \log ($ distance $)$).

[2.3, 4.2, 0.1, 1.5, 2.8, 0.1]

9b. view $=3.589$ height ${ }^{0.49909}$
11a. $y=18(\sqrt{2})^{x-4}, y=144(\sqrt{2}\}^{x-10}$, or
$y=4.5(\sqrt{2})^{x}$
11b. $y=\frac{\log x-\log 18}{\log \sqrt{2}}+4$,
$y=\frac{\log x-\log 144}{\log \sqrt{2}}+10$, or $y=\frac{\log x-\log 4.5}{\log \sqrt{2}}$
13.

CHAPIER 5 REVIEW

1a. $\frac{1}{16}$
1b. $-\frac{1}{3}$
1c. 125
1d. 7
1e. $\frac{1}{4}$

1f. $\frac{27}{64}$
1g. -1
1h. 12
1i. 0.6
3a. $x=\frac{\log 28}{\log 4.7} \approx 2.153$
3b. $x= \pm \sqrt{\frac{\sqrt{\log 2209}}{\log 4.7}} \approx \pm 2.231$
3c. $x=2.9^{1 / 1.25}=2.9^{0.8} \approx 2.344$
3d. $x=3.1^{47} \approx 1.242 \times 10^{23}$
3e. $x=\left(\frac{101}{7}\right)^{1 / 2.4} \approx 3.041$
3f. $x=\frac{\log 18}{\log 1.065} \approx 45.897$
3g. $x=10^{3.771} \approx 5902 \quad$ 3h. $x=47^{5 / 3} \approx 612$
5. about 39.9 h
7. $y=5\left(\frac{32}{5}\right)^{(x-1) / 6}$

9a.

[0, 18, 1, 0, 125, 0]
9b. domain: $0 \leq x \leq 120$; range: $20 \leq y \leq 100$
9c. Vertically stretch by a factor of 80 ; reflect across the x-axis; vertically shift by 100 .
9d. 55% of the average adult size
9e. about 4 years old
11a. approximately 37 sessions
11b. approximately 48 wpm

11c. Sample answer: It takes much longer to improve your typing speed as you reach higher levels. 60 wpm is a good typing speed, and very few people type more than 90 wpm , so $0 \leq x \leq 90$ is a reasonable domain.

CHAPTER 6 • CHAPTER

6 CHAPTER 6 . CHAPTER

LESSON 6.1

1 a.

1b. $\left[\begin{array}{ll}.86 & .14 \\ .08 & .92\end{array}\right]$
3. $\left[\begin{array}{ll}60 & .40 \\ .53 & .47\end{array}\right]$

5a. 20 girls and 25 boys \quad bb. 18 boys
5c. 13 girls batted right-handed.
7a.

7b. $\left[\begin{array}{ll}.99 & .01 \\ .10 & .90\end{array}\right]$

7c. [16.74 8.26]; [17.3986
7.6014]

9a.

9b.
$\left[\begin{array}{lll}.62 & .20 & .18 \\ .35 & .45 & .20 \\ .12 & .32 & .56\end{array}\right]$

9c. The sum of each row is 1 ; percentages should sum to 100%.
11a. 5×5
11b. $m_{32}=1$; there is one round-trip flight between City C and City B.
11c. City A has the most flights. From the graph, more paths have A as an endpoint than any other city. From the matrix, the sum of row 1 (or column
1) is greater than the sum of any other row (or column).

13. $7.4 p+4.7 s=100$

15a. Let x represent the year, and let y represent the number of subscribers.

15b. possible answer: $\hat{y}=1231000(1.44)^{x-1987}$
15c. About 420,782,749 subscribers. Explanations will vary.

LESSON 6.2

1. [196.85 43.15]; 197 students will choose ice cream, 43 will choose frozen yogurt.
3a. $\left[\begin{array}{rrr}7 & 3 & 0 \\ -19 & -7 & 8 \\ 5 & 2 & -1\end{array}\right]$ 3b. $\left[\begin{array}{rr}-2 & 5 \\ 8 & 7\end{array}\right] \quad$ 3c. $\left[\begin{array}{ll}13 & 29\end{array}\right]$
3d. not possible because the inside dimensions do not match
3e. $\left[\begin{array}{ll}4 & -1 \\ 4 & -2\end{array}\right]$
3f. not possible because the dimensions aren't the same
2.

5c.

5d. The original triangle is reflected across the y-axis.

7a.

7b. [4800 4200]
7c. $\left[\begin{array}{ll}72 & .28 \\ .12 & .88\end{array}\right]$

7d. $\left[\begin{array}{ll}4800 & 4200\end{array}\right]\left[\begin{array}{ll}.72 & .28 \\ 12 & .88\end{array}\right]=\left[\begin{array}{ll}3960 & 5040\end{array}\right]$
7e. [3456 5544]
9a. $a=3, b=4$
9b. $a=7, b=4$
11. The probability that the spider is in room 1 after four room changes is .375 . The long-run
probabilities for rooms 1,2 , and 3 are $\left[\begin{array}{lll}\overline{3} & \overline{3} & \overline{3}\end{array}\right]$.

13b. The first and last UPCs are valid.
13c. For the second code, the check digit should be 7. For the third code, the check digit should be 5 .
15. $\overline{C D}: y=-3+\frac{2}{3}(x-1)$ or $y=-1+\frac{2}{3}(x-4)$;
$\overline{A B}: y=2+\frac{2}{3}(x+2)$ or $y=4+\frac{2}{3}(x-1)$;
$\overline{A D}: y=2-\frac{3}{3}(x+2)$ or $y=-3-\frac{5}{3}(x-1)$;
$\overline{B C}: y=4-\frac{3}{3}(x-1)$ or $y=-1-\frac{3}{3}(x-4)$
17. $x=2, y=\frac{1}{2}, z=-3$

LESSON 6.3

1a. $\left\{\begin{array}{l}2 x+5 y=8 \\ 4 x-y=6\end{array}\right.$
1b. $\left\{\begin{array}{l}x-y+2 z=3 \\ x+2 y-3 z=1 \\ 2 x+y-z=2\end{array}\right.$
3a. $\left[\begin{array}{rrr|r}1 & -1 & 2 & 3 \\ 0 & 3 & -5 & -2 \\ 2 & 1 & -1 & 2\end{array}\right]$
3b. $\left[\begin{array}{rrr|r}1 & -1 & 2 & 3 \\ 1 & 2 & -3 & 1 \\ 0 & 3 & -5 & -4\end{array}\right]$
5a. $\left[\begin{array}{lll|r}1 & 0 & 0 & -31 \\ 0 & 1 & 0 & 24 \\ 0 & 0 & 1 & -4\end{array}\right]$
5b. $\left[\begin{array}{rrr|r}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

5c. cannot be reduced to row-echelon form (dependent system)
5d. cannot be reduced to row-echelon form (inconsistent system)
7. Hint: Define variables for the three angle measures and write a system of three equations. The statement of the exercise should help you write two equations. For the third equation, recall that in a triangle the sum of the angle measures is 180°.
9. Hint: Create a system of three equations by
substituting each pair of coordinates for x and y. Then solve the system for a, b, and c.
11a. first plan: $\$ 14,600$; second plan: $\$ 13,100$
11b. Let x represent the number of tickets sold, and let y represent the income in dollars; $y=12500+0.6 x$.
11c. $y=6800+1.8 x$
11d. more than 4750 tickets
11e. The company should choose the first plan if they expect to sell fewer than 4750 tickets and the second if they expect to sell more than 4750 tickets.
13. $\overline{A B}: y=6-\frac{2}{3}(x-4)$ or $y=4+\frac{2}{3}(x-1)$;
$\overline{B C}: y=4-\frac{2}{3}(x-7)$ or $y=6-\frac{2}{3}(x-4)$;
$\overline{C D}: y=1+3(x-6)$ or $y=4+3(x-7)$;
$\overline{D E}: y=1 ; \overline{A E}: y=4-3(x-1)$ or $y=1-3(x-2)$

LESSON 6.4

1a. $\left[\begin{array}{rr}3 & 4 \\ 2 & -5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}11 \\ -8\end{array}\right]$
1b. $\left[\begin{array}{rrr}1 & 2 & 1 \\ 3 & -4 & 5 \\ -2 & -8 & -3\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}0 \\ -11 \\ 1\end{array}\right]$
1c. $\left[\begin{array}{rr}5.2 & 3.6 \\ -5.2 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}7 \\ 8.2\end{array}\right]$
1d. $\left[\begin{array}{rr}\frac{1}{4} & -\frac{2}{5} \\ \frac{3}{8} & \frac{2}{5}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
3a. $\left[\begin{array}{ll}1 a+5 c & 1 b+5 d \\ 6 a+2 c & 6 b+2 d\end{array}\right]=\left[\begin{array}{rr}-7 & 33 \\ 14 & -26\end{array}\right]$;
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{rr}3 & -7 \\ -2 & 8\end{array}\right]$
3b. $\left[\begin{array}{ll}1 a+5 c & 1 b+5 d \\ 6 a+2 c & 6 b+2 d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$;
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{rr}-\frac{1}{14} & \frac{5}{28} \\ \frac{3}{14} & -\frac{1}{28}\end{array}\right]$
5a. $\left[\begin{array}{rr}4 & -3 \\ -5 & 4\end{array}\right]$

5b. $\left[\begin{array}{rrr}-\frac{1}{6} & \frac{2}{3} & \frac{1}{9} \\ \frac{1}{2} & -1 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]$ or $\left[\begin{array}{rrr}0.167 & 0.667 & 0.111 \\ 0.5 & -1 & 0 \\ 0 & 0 & 0.333\end{array}\right]$
5c. $\left[\begin{array}{rr}\frac{7}{5} & -\frac{3}{5} \\ -2 & 1\end{array}\right]$ or $\left[\begin{array}{rr}1.4 & -0.6 \\ -2 & 1\end{array}\right]$
5d. Inverse does not exist.
7a. Jolly rides cost $\$ 0.50$, Adventure rides cost $\$ 0.85$, and Thrill rides cost $\$ 1.50$.
7b. $\$ 28.50$
7c. Carey would have been better off buying a ticket book.
9. $20^{\circ}, 50^{\circ}, 110^{\circ}$
11. $x=0.0016, y=0.0126, z=0.0110$

13a. $\left[\begin{array}{rr}4 & -3 \\ -5 & 4\end{array}\right]$
13b. $\left[\begin{array}{ccc}-\frac{5}{9} & \frac{13}{9} & \frac{1}{9} \\ \frac{1}{2} & -1 & 0 \\ -\frac{7}{6} & \frac{7}{3} & \frac{1}{3}\end{array}\right]$ or
$\left[\begin{array}{rrr}-0.5555 & 1.4444 & 0.1111 \\ 0.5 & -1 & 0 \\ -1.6666 & 2.3333 & 0.3333\end{array}\right]$
15. Hint: You want to write a second equation that would result in the graph of the same line.
17a. $[A]=\left[\begin{array}{llll}0 & 2 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right]$
17b. It is 0 because there are zero roads connecting Murray to itself.
17c. The matrix has reflection symmetry across the main diagonal.
17d. 5; 10. The matrix sum is twice the number of roads; each road is counted twice in the matrix because it can be traveled in either direction.
17e. For example, if the road between Davis and Terre is one-way toward Davis, a_{34} changes from 1 to 0 . The matrix is no longer symmetric.

LESSON 6.5

1a. $y<\frac{10-2 x}{-5}$ or $y<-2+0.4 x$
1b. $y<\frac{6-2 x}{-12}$ or $y<-\frac{1}{2}+\frac{1}{6} x$
3a. $y<2-0.5 x$
3b. $y \geq 3+1.5 x$
3c. $y>1-0.75 x$
5.

3d. $y \leq 1.5+0.5 x$ vertices: $(0,2),(0,5)$, (2.752, 3.596), (3.529, 2.353)
7.

vertices: $(0,4),(3,0)$, $(1,0),(0,2)$

9a. Let x represent length in inches, and let y represent width in inches.
$\left\{\begin{array}{l}x y \geq 200 \\ x y \leq 300 \\ x+y \geq 33 \\ x+y \leq 40\end{array}\right.$
9b.

9c. iii. no
9c. i. no
9c. ii. yes
$\begin{array}{ll}\text { 11a. } 5 x+2 y>100 & \text { 11b. } y<10\end{array}$
11c. $x+y \leq 40$
11d. common sense: $x \geq 0, y \geq 0$

11e. $(20,0),(40,0),(30,10),(16,10)$
13. $a=100, b \approx 0.7$

15a. 2 or 3 spores
15b. about 1,868,302 spores

15c. $x=\frac{\log \frac{y}{2.68}}{\log 3.84}$
15d. after 14 hr 40 min

LESSON 6.6

1.

3.

vertices: (5500, 5000), (5500, 16500), (10000, 30000), (35000, 5000); (35000, 5000); maximum: 3300
5a. possible answer: $\quad \mathbf{5 b}$. possible answer:

$$
\left\{\begin{array} { l }
{ y \geq 7 } \\
{ y \leq \frac { 7 } { 5 } (x - 3) + 6 } \\
{ y \leq - \frac { 7 } { 1 2 } x + 1 3 }
\end{array} \left\{\begin{array}{l}
x \geq 0 \\
y \geq 7 \\
y \geq \frac{7}{5}(x-3)+6 \\
y \leq-\frac{7}{12} x+13
\end{array}\right.\right.
$$

5c. possible answer:

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \\
x \leq 11 \\
y \leq \frac{7}{5}(x-3)+6 \\
y \leq 7
\end{array}\right.
$$

7. 5 radio minutes and 10 newspaper ads to reach a maximum of 155,000 people. This requires the assumption that people who listen to the radio are independent of people who read the newspaper, which is probably not realistic.
8. 3000 acres of coffee and 4500 acres of cocoa for a maximum total income of $\$ 289,800$
9. $x=-\frac{7}{11}, y=\frac{169}{11}$

11b. $x=-3.5, y=74, z=31$
13. $\left\{\begin{array}{l}x \geq 2 \\ y \leq 5 \\ x+y \geq 3 \\ 2 x-y \leq 9\end{array}\right.$
15. $y=-\left(\frac{x}{2}\right)^{2}-\frac{3}{2}$ or $y=-\frac{1}{4} x^{2}-\frac{3}{2}$

CHAPTER 6 REVIEW

1a. impossible because the dimensions are not the same
1b. $\left[\begin{array}{rr}-4 & 7 \\ 1 & 2\end{array}\right]$
1c. $\left[\begin{array}{rrr}-12 & 4 & 8 \\ 8 & 12 & -8\end{array}\right]$
1d. $\left[\begin{array}{rrr}-3 & 1 & 2 \\ -11 & 11 & 6\end{array}\right]$

1e. impossible because the inside dimensions do not match
1f. $\left[\begin{array}{lll}-7 & -5 & 6\end{array}\right]$
3a. $x=2.5, y=7$
3b. $x=1.22, y=6.9, z=3.4$
5a. consistent and independent
5b. consistent and dependent
5c. inconsistent
5d. inconsistent
7. about 4.4 yr

9a. $\left[\begin{array}{rrr}.92 & .08 & 0 \\ .12 & .82 & .06 \\ 0 & .15 & .85\end{array}\right]$
9b. i. Mozart: 81; Picasso: 66; Hemingway: 63
9b. ii. Mozart: 82; Picasso: 70; Hemingway: 58
9b. iii. Mozart: 94; Picasso: 76; Hemingway: 40
11a. $a<0 ; p<0 ; d>0$
11b. $a>0 ; p>0$; d cannot be determined
11c. $a>0 ; p=0 ; d<0$
13. 20 students in second period, 18 students in third period, and 24 students in seventh period
15a. $x=245 \quad$ 15b. $x=20$
15c. $x=-\frac{1}{2}$ 15d. $x=\frac{\log \left(\frac{37000}{15}\right)}{\log 9.4} \approx 3.4858$
15e. $x=21 \quad$ 15f. $x=\frac{\log 342}{\log 36} \approx 1.6282$
17a. $y=50(0.72)^{x-4}$ or $y=25.92(0.72)^{x-6}$
17b. 0.72; decay
17c. approximately 186
17d. 0

19a. a translation right 5 units and down 2 units

19b. a reflection across the x-axis and a vertical stretch by a factor of 2

19c. $-1 \cdot[P]=\left[\begin{array}{rrrrr}2 & 1 & 0 & -1 & -2 \\ -4 & -1 & 0 & -1 & -4\end{array}\right]$;
This is a reflection across the x-axis and a reflection across the y-axis. However, because the graph is symmetric with respect to the y-axis, a reflection over that axis does not change the graph.

19d. $[P]+\left[\begin{array}{rrrrr}-2 & -2 & -2 & -2 & -2 \\ 3 & 3 & 3 & 3 & 3\end{array}\right]=$
$\left[\begin{array}{rrrrr}-4 & -3 & -2 & -1 & 0 \\ 7 & 4 & 3 & 4 & 7\end{array}\right]$
CHAPTER 7 -CHAPTER 7 CHAPTER $7 \cdot$ CHAPTER
LESSON 7.1
1a. 3
1b. 2
1c. 7
1d. 5

3a. no; $\{2.2,2.6,1.8,-0.2,-3.4\}$
3b. no; $\{0.007,0.006,0.008,0.010\}$
3c. no; $\{150,150,150\}$
5a. $D_{1}=\{2,3,4,5,6\} ; D_{2}=\{1,1,1,1\} ; 2$ nd degree
$5 \mathbf{b}$. The polynomial is 2nd degree, and the D_{2} values are constant.
5c. 4 points. You have to find the finite differences twice, so you need at least four data points to calculate two D_{2} values that can be compared.
5d. $s=0.5 n^{2}+0.5 n ; s=78$
5e. The pennies can be arranged to form triangles.

7a. i. $D_{1}=\{15.1,5.3,-4.5,-14.3,-24.1,-33.9\}$;
$D_{2}=\{-9.8,-9.8,-9.8,-9.8,-9.8\}$
7a. ii. $D_{1}=\{59.1,49.3,39.5,29.7,19.9,10.1\}$;
$D_{2}=\{-9.8,-9.8,-9.8,-9.8,-9.8\}$
7b. i. 2; ii. 2
7c. i. $h=-4.9 t^{2}+20 t+80$; ii. $h=-4.9 t^{2}+64 t+4$
9. Let x represent the energy level, and let y represent the maximum number of electrons; $y=2 x^{2}$.
11. $x=2.5$

11b. $x=3$ or $x=-1$
11c. $x=\frac{\log 16}{\log 5} \approx 1.7227$
13. $\left\{\begin{array}{l}y \geq-\frac{1}{2} x+\frac{3}{2} \\ y \leq \frac{1}{2} x+\frac{9}{2} \\ y \leq-\frac{11}{6} x+\frac{97}{6}\end{array}\right.$

LESSON 7.2
1a. factored form and vertex form
1b. none of these forms
1c. factored form
1d. general form
3a. -1 and 2
3b. -3 and 2
3c. 2 and 5
5a. $y=x^{2}-x-2$
5b. $y=0.5 x^{2}+0.5 x-3$
5c. $y=-2 x^{2}+14 x-20$
7a. $y=-0.5 x^{2}-h x-0.5 h^{2}+4$
7b. $y=a x^{2}-8 a x+16 a$
7c. $y=a x^{2}-2 a h x+a h^{2}+k$
7d. $y=-0.5 x^{2}-(0.5 r+2) x-2 r$
7e. $y=a x^{2}-2 a x-8 a$
7f. $y=a x^{2}-a(r+s) x+a r s$
9a. $y=(x+2)(x-1)$
9b. $y=-0.5(x+2)(x-3)$
9c. $y=\frac{1}{3}(x+2)(x-1)(x-3)$
11a. lengths: $35,30,25,20,15$; areas: 175,300 , 375, 400, 375
11b. $y=x(40-x)$ or $y=-x^{2}+40 x$
11c. $20 \mathrm{~m} ; 400 \mathrm{~m}^{2}$.
11d. 0 m and 40 m
13a. $12 x^{2}-15 x$
13c. $x^{2}-49$
15a. $(x+5)(x-2)$
13b. $x^{2}-2 x-15$

15c. $(x+5)(x-5)$

LESSON 7.3

1a. $(x-5)^{2}$
1b. $\left(x+\frac{5}{2}\right)^{2}$
1c. $(2 x-3)^{2}$ or $4\left(x-\frac{3}{2}\right)^{2}$ 1d. $(x-y)^{2}$
3a. $y=(x+10)^{2}-6$
3b. $y=(x-3.5)^{2}+3.75$
3c. $y=6(x-2)^{2}+123$
3d. $y=5(x+0.8)^{2}-3.2$
5. $(-4,12)$

7a. Let x represent time in seconds, and let y represent height in meters; $y=-4.9(x-1.1)$
$(x-4.7)$ or $y=-4.9 x^{2}+28.42 x-25.333$.
7b. $28.42 \mathrm{~m} / \mathrm{s}$
7c. 25.333 m
9. Let x represent time in seconds, and let y represent height in meters;
$y=-4.9 x^{2}+17.2 x+50$.
11a. $n=-2 p+100$
11b. $R(p)=-2 p^{2}+100 p$
11c. Vertex form: $R(p)=-2(p-25)^{2}+1250$. The vertex is $(25,1250)$. This means that the maximum revenue is $\$ 1250$ when the price is $\$ 25$.
11d. between $\$ 15$ and $\$ 35$
13. $x=2, x=-3$, or $x=\frac{1}{2}$

15a. Let x represent the year, and let y represent the number of endangered species.

[1975, 2005, 5, 200, 1000, 100]
15b. $\hat{y}=45.64 x-90289$
15c. approximately 1219 species in 2005; 3273 species in 2050

LESSON 7.4

$\begin{array}{ll}\text { 1a. } x=7.3 \text { or } x=-2.7 & \text { 1b. } x=-0.95 \text { or } x=-7.95\end{array}$
1c. $x=2$ or $x=-\frac{1}{2}$
3a. -0.102
3b. -5.898
$\begin{array}{ll}\text { 3c. }-0.243 & \text { 3d. } 8.243\end{array}$
5a. $y=(x-1)(x-5)$
5b. $y=(x+2)(x-9)$
5c. $y=5(x+1)(x+1.4)$
7a. $y=a(x-3)(x+3)$ for $a \neq 0$
7b. $y=a(x-4)\left(x+\frac{2}{5}\right)$ or $y=a(x-4)(5 x+2)$
for $a \neq 0$
7c. $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$ for $a \neq 0$
9. Hint: When will the quadratic formula result in no real solutions?
11a. $y=-4 x^{2}-6.8 x+49.2$

11b. 49.2 L
11c. 2.76 min
13a. $x^{2}+14 x+49=(x+7)^{2}$
13b. $x^{2}-10 x+25=(x-5)^{2}$
13c. $x^{2}+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^{2}$
13d. $2 x^{2}+8 x+8=2\left(x^{2}+4 x+4\right)=2(x+2)^{2}$
15a. $y=2 x^{2}-x-15$
15b. $y=-2 x^{2}+4 x+2$
17. $a=k=52.08 \overline{3} \mathrm{ft} ; b=j=33 \overline{3} \mathrm{ft} ; c=i=18.75 \mathrm{ft}$; $d=h=8 . \overline{3} \mathrm{ft}, e=g=2.08 \overline{3} \mathrm{ft} ; f=0 ; 229.1 \overline{6} \mathrm{ft}$

LESSON 7.5

1a. $8+4 i$
1b. 7
1c. $4-2 i$
1d. $-2.56-0.61 i$
3a. $5+i$
3b. $-1-2 i$
3c. $2-3 i$
3d. $-2.35+2.71 i$
5 a.

5c.

7a. $-i$
7b. 1
7c. i
7d. -1
9. $0.2+1.6 i$

11a. $y=x^{2}-2 x-15$
11b. $y=x^{2}+7 x+12.25$
11c. $y=x^{2}+25$
11d. $y=x^{2}-4 x+5$

13a. $x=(5+\sqrt{34}) i \approx 10.83 i$ or
$x=(5-\sqrt{34}) i \approx-0.83 i$
13b. $x=2 i$ or $x=i$
13c. The coefficients of the quadratic equations are nonreal.
15a. $0,0,0,0,0,0$; remains constant at 0
15b. $0, i,-1+i,-i,-1+i,-i$; alternates between $-1+i$ and $-i$
15c. $0,1-i, 1-3 i,-7-7 i, 1+97 i,-9407+193 i$; no recognizable pattern in these six terms
15d. $0,0.2+0.2 i, 0.2+0.28 i, 0.1616+0.312 i$,
$0.12877056+0.3008384 i, 0.1260781142+$
$0.2774782585 i$; approaches $0.142120634+$ $0.2794237653 i$

17a. Let x represent the first integer, and let y represent the second integer.

$$
\left\{\begin{array}{l}
x>0 \\
y>0 \\
3 x+4 y<30 \\
2 x<y+5
\end{array}\right.
$$

17b.

17c. (1, 1), (2, 1), (1, 2), (2, 2), (3, 2), (1, 3), $(2,3),(3,3),(1,4),(2,4),(3,4),(4,4),(1,5)$, $(2,5),(3,5),(1,6)$

LESSON 7.6

1a. x-intercepts: $-1.5,-6 ; y$-intercept: -2.25
1b. x-intercept: 4; y-intercept: 48
1c. x-intercepts: $3,-2,-5$; y-intercept: 60
1d. x-intercepts: -3 , 3; y-intercept: -135
3a. $y=x^{2}-10 x+24$
3b. $y=x^{2}-6 x+9$

3c. $y=x^{3}-64 x \quad$ 3d. $y=3 x^{3}+15 x^{2}-12 x-60$
5a. approximately 2.94 units; approximately 420 cubic units
5b. 5 and approximately 1.28
5c. The graph exists, but these x - and y-values make no physical sense for this context.
If $x \geq 8$, there will be no box left after you take out two 8 -unit square corners from the 16-unit width.
5d. The graph exists, but these x - and y-values make no physical sense for this context.
7a. sample answer:
7b. sample answer:

7c. not possible
7d. sample answer:

7e. sample answer:

7f. not possible

9a. $(T+t)^{2}$ or $T^{2}+2 T t+t^{2}$

	7	1
T	${ }^{7 T}$	7
t	T	t

9b. $(T+t)^{2}=1$ or $T^{2}+2 T t+t^{2}=1$
9c. $0.70+t^{2}=1$
9d. $t \approx 0.548$
9e. $T \approx 0.452$
9f. $T T \approx 0.204$, or about 20% of the population
11. $y=0.25(x+2)^{2}+3$

13a. $f^{-1}(x)=\frac{3}{2} x-5$
13b. $g^{-1}(x)=-3+(x+6)^{3 / 2}$
13c. $h^{-1}(x)=\log _{2}(7-x)$

LESSON 7.7

1a. $x=-5, x=3$, and $x=7$
1b. $x=-6, x=-3, x=2$, and $x=6$
1c. $x=-5$ and $x=2$
1d. $x=-5, x=-3, x=1, x=4$, and $x=6$
3a. 3
3b. 4
3c. 2
3d. 5
5a. $y=a(x-4)$ where $a \neq 0$
5b. $y=a(x-4)^{2}$ where $a \neq 0$
5c. $y=a(x-4)^{3}$ where $a \neq 0$; or $y=a(x-4)\left(x-r_{1}\right)\left(x-r_{2}\right)$ where $a \neq 0$, and r_{1} and r_{2} are complex conjugates
7a. 4
7b. 5
7c. $y=-x(x+5)^{2}(x+1)(x-4)$
9. The leading coefficient is equal to the y-intercept divided by the product of the zeros if the degree of the function is even, or the y-intercept divided by -1 times the product of the zeros if the degree of the function is odd.
11a. i. $y=(x+5)^{2}(x+2)(x-1)$
11a. ii. $y=-(x+5)^{2}(x+2)(x-1)$
11a. iii. $y=(x+5)^{2}(x+2)(x-1)^{2}$
11a. iv. $y=-(x+5)(x+2)^{3}(x-1)$
11b. i. $x=-5, x=-5, x=-2$, and $x=1$
11b. ii. $x=-5, x=-5, x=-2$, and $x=1$
11b. iii. $x=-5, x=-5, x=-2, x=1$, and $x=1$
11b. iv. $x=-5, x=-2, x=-2, x=-2$, and $x=1$
13. Hint: A polynomial function of degree n will have at most $n-1$ extreme values and n x-intercepts.
15. $3-5 \sqrt{2} ; 0=a\left(x^{2}-6 x-41\right)$ where $a \neq 0$

17a. $\left[\begin{array}{rr}4 & 9 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}4 \\ 7\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}\frac{5}{2} \\ -\frac{2}{3}\end{array}\right]$
17b. $\left[\begin{array}{rr|r}4 & 9 & 4 \\ 2 & -3 & 7\end{array}\right] \rightarrow\left[\begin{array}{rr|r}1 & 0 & \frac{5}{2} \\ 0 & 1 & -\frac{2}{3}\end{array}\right]$

LESSON 7.8

1a. $3 x^{2}+7 x+3$
1b. $6 x^{3}-4 x^{2}$
3a. $a=12 \quad$ 3b. $b=2$
3c. $c=7 \quad$ 3d. $d=-4$
$5 . \pm 15, \pm 5, \pm 3, \pm 1, \pm \frac{15}{2}, \pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}$
7a. $2(3 i)^{3}-(3 i)^{2}+18(3 i)-9=$
$-54 i+9+54 i-9=0$
7b. $x=-3 i$ and $x=\frac{1}{2}$
9. $y=(x-3)(x+5)(2 x-1)$ or
$y=2(x-3)(x+5)\left(x-\frac{1}{2}\right)$
11a. $f(x)=0.00639 x^{3 / 2} \quad$ 11b. $f^{-1}(x) \approx(156 x)^{2 / 3}$
11c. 33 in.
11d. about 176 ft
13a.

13b. 15 baseball caps and 3 sun hats; $\$ 33$
15a. $x=-3$ or $x=1$
15b. $x=\frac{-3 \pm \sqrt{37}}{2}$
15c. $x=1 \pm 2 i$

CHAPIER 7 REVIEW

1a. $2(x-2)(x-3)$
1b. $(2 x+1)(x+3)$ or $2(x+0.5)(x+3)$
1c. $x(x-12)(x+2)$
3. $1 ; 4 ; 10 ; \frac{1}{6} n^{3}-\frac{1}{2} n^{2}+\frac{1}{3} n$
$5 a$.

zeros: $x=-0.83$ and $x=4.83$

5 b.

zeros: $x=-1$
and $x=5$

5c.

zeros: $x=1$
and $x=2$
$5 e$.

zeros: $x=-5.84$,
$x=1.41$, and $x=2.43$

5d.

zeros: $x=-4$,
$x=-1$, and $x=3$
$5 f$.

zeros: $x=-2, x=-1$, $x=0.5$, and $x=2$
7. 18 in. by 18 in. by 36 in.

9a. $y=0.5 x^{2}+0.5 x+1$
9b. 16 pieces; 56 pieces
11a. $\pm 1, \pm 3, \pm 13, \pm 39, \pm \frac{1}{3}, \pm \frac{13}{3}$
11b. $x=-\frac{1}{3}, x=3, x=2+3 i$, and $x=2-3 i$
13. $2 x^{2}+4 x+3$

CHAPTER 8 . CHAPTER 8 CHAPTER 8 . CHAPTER

LESSON 8.1

1 a.

t	x	y
-2	-7	-3
-1	-4	-1
0	-1	1
1	2	3
2	5	5

1b.

t	x	y
-2	-1	4
-1	0	1
0	1	0
1	2	1
2	3	4

1c.

t	x	y
-2	4	1
-1	1	2
0	0	3
1	1	4
2	4	5

1d.

t	x	y
-2	-3	0
-1	-2	1.73
0	-1	2
1	0	1.73
2	1	0

3a.

[-9.4, 9.4, 1, -6.2, 6.2, 1]

3b. The graph is translated right 2 units.
3c. The graph is translated down 3 units.
3d. The graph is translated right 5 units and up 2 units.
3e. The graph is translated horizontally a units and vertically b units.
5a. $15 \mathrm{~s} \quad \mathbf{5 b} .30$ yd $\mathbf{5 c}$. $-2 \mathrm{yd} / \mathrm{s}$
5d. Sample answer: 65 yd is her starting position relative to the goal line, $-2 \mathrm{yd} / \mathrm{s}$ is her velocity, and 50 yd is her position relative to the sideline.
5e. The graph simulation will produce the graphs pictured in the problem. A good window is $[0,100,10,0,60,10]$ with $0 \leq t \leq 15$.
$\mathbf{5 f}$. She crosses the 10 -yard line after 27.5 s .
5g. $65-2 t=10 ; 27.5 \mathrm{~s}$
7a. The graph is reflected across the x-axis.

7b. The graph is reflected across the y-axis.

9a. $x=0.4 t$ and $y=1$
9b. $[0,50,5,0,3,1] ; 0 \leq t \leq 125$
9c. $x=1.8(t-100), y=2$
9d. The tortoise will win.
9e. The tortoise takes 125 s and the hare takes approximately 28 s, but because he starts 100 s later, he finishes at 128 s .
11a.

$[0,8,1,0,7,1]$
11b. $1.4 \mathrm{~m} / \mathrm{s}$ is the velocity of the first walker, 3.1 m is the vertical distance between the walkers when they start, 4.7 m is the horizontal distance between the walkers when they start, and $1.2 \mathrm{~m} / \mathrm{s}$ is the velocity of the second walker.
11c. $(4.7,3.1)$

11d. No, the first walker arrives at $(4.7,3.1)$ at 3.357 s, and the second walker arrives there at 2.583 s.
13. $(7,-3)$

15a. $2.5 n^{2}-5.5 n-3$
15b. 887
17. $y=-2 x^{2}+5 x-2$

LESSON 8.2

1a. $t=x-1$
1b. $t=\frac{x+1}{3}$
1c. $t= \pm \sqrt{x}$
1d. $t=x+1$
3a. $y=\frac{x+7}{2}$
3b. $y= \pm \sqrt{x}+1$
3c. $y=\frac{2 x-4}{3}$
3d. $y=2(x+2)^{2}$
5.

7. $-2.5 \leq t \leq 2.5$

9a. $x=20+2 t, y=5+t$
9b.

$[0,50,10,0,20,5]$
$0 \leq t \leq 10$
The points lie on the line.
9c. $y=\frac{1}{2} x-5$
9d. The slope of the line in 9c is the ratio of the y-slope over the x-slope in the parametric equations.
11a. $x=1, y=1.5 t$
11b. $x=1.1, y=12-2.5 t$
11c. possible answer: $[0,2,1,0,12,1] ; 0 \leq t \leq 3$
11d.

$[0,2,1,0,12,1]$
$0 \leq t \leq 3$
They meet after hiking 3 h , when both are 4.5 mi north of the trailhead.
11e. $1.5 t=12-2.5 t ; t=3$; substitute $t=3$ into either y-equation to get $y=4.5$.
13. $x=t^{2}, y=t$
15. $y=\left(\frac{2}{3}(x-5)-2\right)+3$ or $y=\frac{2}{3} x-\frac{7}{3}$

LESSON 8.3

1. $\sin A=\frac{k}{j} ; \sin B=\frac{h}{j}$;
$\sin ^{-1}\left(\frac{k}{j}\right)=A ; \sin ^{-1}\left(\frac{h}{j}\right)=B ;$
$\cos B=\frac{k}{j} ; \cos A=\frac{h}{j} ;$
$\cos ^{-1}\left(\frac{k}{j}\right)=B ; \cos ^{-1}\left(\frac{h}{j}\right)=A$;
$\tan A=\frac{k}{h} ; \tan B=\frac{h}{k} ;$
$\tan ^{-1}\left(\frac{h}{h}\right)=A ; \tan ^{-1}\left(\frac{h}{h}\right)=B$
3a. $a \approx 17.3$
3b. $b \approx 22.8$
3c. $c \approx 79.3$
2.

5a. 60°
5b.

5c. 180 mi east, 311.8 mi north
7a.

$$
\begin{gathered}
{[0,5,1,-2,5,1]} \\
0 \leq t \leq 1
\end{gathered}
$$

7b. It is a segment 5 units long, at an angle of 40° above the x-axis.
7c. This is the value of the angle in the equations.
7d. It makes the segment 5 units long when $t=1$; the graph becomes steeper, and the segment becomes shorter; the graph becomes shorter; but the slope is the same as it was originally.

9a.

$x=100 t \cos 30^{\circ}, y=100 t \sin 30^{\circ}$
9b. $0 \leq t \leq 5$
9c. 100 represents the speed of the plane in miles per hour, t represents time in hours, 30° is the angle the plane is making with the x-axis, x is the horizontal position at any time, and y is the vertical position at any time.
11a.

11b. 23.2 h
11c. 492.6 mi west, 132.0 mi north
11d. The paths cross at approximately 480 mi west and 129 mi north of St. Petersburg. No, the ships do not collide because Tanker A reaches this point after 24.4 h and Tanker B reaches this point after 22.6 h .

13a. $y=5+\frac{3}{4}(x-6)$ or $y=\frac{1}{2}+\frac{3}{4} x$
13b. $y=5+\frac{3(x-6)}{4}$. They are the same equation.
15. $(x-2.6)^{2}+(y+4.5)^{2}=12.96$

LESSON 8.4

1. $x=10 t \cos 30^{\circ}, y=10 t \sin 30^{\circ}$

3a.

$3 b$.

3c.

3d.

5a. (-0.3, 0.5)
5b. $x=-0.3+4 t$

5c. $y=0.5-7 t$

5d.

$[-0.4,0.1,0.1,-0.1,0.6,0.1]$

$$
0 \leq t \leq 0.1
$$

5e. At $0.075 \mathrm{~h}(4.5 \mathrm{~min})$, the boat lands 0.025 km (25
$\mathrm{m})$ south of the dock.
5f. 0.605 km
7a. $y=-5 t$
7b. $x=s t$
7c. $s=10 \mathrm{mi} / \mathrm{h}$
7d. 4.47 mi
7e. 0.4 h
7f. $11.18 \mathrm{mi} / \mathrm{h}$

7 g. 63.4°
9a. $y=-20 t \sin 45^{\circ}$
9b. $x=20 t \cos 45^{\circ}$
9c. Both the plane's motion and the wind contribute to the actual path of the plane, so you add the x-contributions and add the y-contributions to form the final equations.
9d. possible answer:
$[-1000,0,100,-100,0,10] ; 0 \leq t \leq 5$
9e. 4.24. It takes the plane 4.24 h to fly 1000 mi west.
9f. 60 mi
11a.

11b. $x=-320 t \cos 40^{\circ}, y=320 t \sin 40^{\circ}$
11c.

11d. $x=-32 t, y=0$
11e. $x=-320 t \cos 40^{\circ}-32 t, y=320 t \sin 40^{\circ}$
11f. 1385.7 mi west and 1028.5 mi north
13a. x-component: $50 \cos 40^{\circ} \approx 38.3$; y-component: $50 \sin 40^{\circ} \sim 32.1$
13b. x-component: $90 \cos 140^{\circ} \sim-68.9$;
y-component: $90 \sin 140^{\circ} \sim 57.9$
13c. x-component: - 30.6; y-component: 90.0
13d. $95.1 \mathrm{~N} \quad$ 13e. $109^{\circ} \quad$ 13f. 95.1 N at 289°
15a. two real, rational roots

15b. two real, irrational roots
15c. no real roots
15d. one real, rational root

LESSON 8.5

1a. the Moon; centimeters and seconds
1b. right 400 cm and up 700 cm
1c. up-left
1d. $50 \mathrm{~cm} / \mathrm{s}$
3a. $x=2 t, y=-4.9 t^{2}+12$
3b. $-4.9 t^{2}+12=0$
3c. $1.56 \mathrm{~s}, 3.13 \mathrm{~m}$ from the cliff
3d. possible answer: [0, 4, 1, 0, 12, 1]
5a. possible answer: $[0,5,1,0,3,5,1], 0 \leq t \leq 1.5$
5b. Hint: Describe the initial angle, velocity, and position of the projectile. Be sure to include units, and state what planet the motion occurred on.
7a. $x=83 t \cos 0^{\circ}, y=-4.9 t^{2}+83 t \sin 0^{\circ}+1.2$
7b. No; it will hit the ground 28.93 m before reaching the target.
7c. The angle must be between 2.44° and 3.43°.
7d. at least $217 \mathrm{~m} / \mathrm{s}$
9. 46 ft from the end of the cannon

11a. $x=122 t \cos 38^{\circ}, y=-16 t^{2}+122 t \sin 38^{\circ}$
11b. 451 ft
11c. 378 ft
13a. $x=2.3 t+4, y=3.8 t+3$

13b. $4.44 \mathrm{~m} / \mathrm{s}$ on a bearing of 31°
15. $a\left(4 x^{3}+8 x^{2}-23 x-33\right)=0$, where a is an integer, $a \neq 0$

LESSON 8.6

1. 9.7 cm
2. $X \sim 50.2^{\circ}$ and $Z \sim 92.8^{\circ}$

5a. $B=25.5^{\circ} ; B C \approx 6.4 \mathrm{~cm} ; A B \approx 8.35 \mathrm{~cm}$
5b. $J \approx 38.8^{\circ} ; L \approx 33.3^{\circ} ; K J \approx 4.77 \mathrm{~cm}$
7a. 12.19 cm
7b. Because the triangle is isosceles, knowing the measure of one angle allows you to determine the measures of all three angles.
9. 2.5 km
11a. 41°
11b. 70°
11c. 0°

13a.

x-component: $12 \cos 78^{\circ} \approx 2.5$;
y-component: - $12 \sin 78^{\circ} \approx-11.7$
13b.

x-component: $-16 \cos 49^{\circ} \approx-10.5$;
y-component: - $16 \sin 49^{\circ} \approx-12.1$
15a. $\$ 26,376.31$
15b. 20 years 11 months

LESSON 8.7

1. approximately 6.1 km
3a. $A \approx 41.4^{\circ}$
3b. $b=8$
2. 1659.8 mi
3. From point A, the underground chamber is at a 22° angle from the ground between A and B. From point B, the chamber is at a 120° angle from the ground. If the truck goes 1.5 km farther in the same direction, the chamber will be approximately 2.6 km directly beneath the truck.
4. 2.02 mi
5. 10.3 nautical mi
6. $1751 \mathrm{~cm}^{2}$

CHAPIER 8 REVEW

1a. $t=3: x=-8, y=0.5 ; t=0: x=1, y=2$;
$t=-3$: $x=10, y=-1$
1b. $y=\frac{6}{11}$
1c. $x=\frac{5}{2}$
1d. When $t=-1$, the y-value is undefined.

3a. $y=\frac{x+7}{2}$. The graph is the same.

3b. $y= \pm \sqrt{x-1}-2$. The graph is the same except for the restrictions on t.
3c. $y=(2 x-1)^{2}$. The graph is the same. The values of t are restricted, but endpoints are not visible within the calculator screen given.
3d. $y=x^{2}-5$. The graph is the same, except the parametric equations will not allow for negative values for x.
5a. $A \approx 43^{\circ}$
5b. $B \approx 28^{\circ}$
5c. $c \approx 23.0$
5d. $d \approx 12.9$
5e. $e \approx 21.4$
5f. $f \approx 17.1$
7.7 .2 m

[0, 10, 1, 0, 11, 1]
9. She will miss it by 11.1 ft .

11a. $a \approx 7.8 \mathrm{~m}, c \approx 6.7 \mathrm{~m}, C=42^{\circ}$
11b. $A \approx 40^{\circ}, b \approx 3.5 \mathrm{~cm}, C \approx 58^{\circ}$

CHAPTER 9.CHAPTER
 9 CHAPTER $9 \cdot$ CHAPTER

LESSON 9.1

1a. 10 units
1b. $\sqrt{74}$ units
1c. $\sqrt{85}$ units
1d. $\sqrt{81+4 d^{2}}$ units
3. $x=-1 \pm \sqrt{2160}$ or $x=-1 \pm 12 \sqrt{15}$
5. approximately 25.34 units
7. approximately between the points $(2.5,2.134)$ and (2.5, 3.866)

9a. $y=\sqrt{10^{2}+x^{2}}+\sqrt{(20-x)^{2}+13^{2}}$
9b. domain: $0 \leq x \leq 20$; range: $30<y<36$
9c. When the wire is fastened approximately 8.696 m from the 10 m pole, the minimum length is approximately 30.48 m .
11a. $d=\sqrt{(5-x)^{2}+\left(0.5 x^{2}+4\right)^{2}}$
11b. approximately 6.02 units; approximately (0.92, 1.42)

13a-d.

13b. All three perpendicular bisectors intersect at the same point. No, you could find the intersection by constructing only two perpendicular bisectors.
13c. Approximately (6.17, 5.50); this should agree with the answer to 12 a.
13d. Regardless of which point is chosen, the circle passes through A, B, and C. Because the radius of the circle is constant, the distance from the recreation center to all three towns is the same.
15a. midpoint of $\overline{A B}$: $(4.5,1.5)$; midpoint of $\overline{B C}$: $(2.5,0)$; midpoint of $\overline{A C}:(6,-3.5)$
15b. median from A to $\overline{B C}$:
$y=-0 . \overline{36} x+0 . \overline{90}$ or $y=-\frac{4}{11} x+\frac{10}{11}$;
median from B to $\overline{A C}: y=-1.7 x+6.7$;
median from C to $\overline{A B}: y=13 x-57$
15c. $(4 \overline{3},-0 . \overline{6})$ or $\left(4 \frac{1}{3},-\frac{2}{3}\right)$
17. approximately 44.6 nautical mi
19. $w=74^{\circ}, x=50^{\circ}$

LESSON 9.2

1a. center: $(0,0)$; radius: 2

$y= \pm \sqrt{4-x^{2}}$
1c. center: $(-1,2)$; radius: 3

1e. center: $(1,2)$; radius: 2

1b. center: $(3,0)$; radius: 1

$y= \pm \sqrt{1-(x-3)^{2}}$

1d. center: $(0,1.5)$; radius: 0.5

$y= \pm \sqrt{0.25-x^{2}}+1.5$

1f. center: $(-3,0)$;
radius: 4

3a. $x=5 \cos t+3, y=5 \sin t$
3b. $x=3 \cos t-1, y=3 \sin t+2$
3c. $x=4 \cos t+2.5, y=4 \sin t+0.75$
3d. $x=0.5 \cos t+2.5, y=0.5 \sin t+1.25$
5a. $x=2 \cos t, y=2 \sin t+3$
5b. $x=6 \cos t-1, y=6 \sin t+2$
7a. $(\sqrt{27}, 0),(-\sqrt{27}, 0)$
7b. $(3, \sqrt{21}),(3,-\sqrt{21})$
7c. $(-1+\sqrt{7}, 2),(-1-\sqrt{7}, 2)$
7d. $(3+\sqrt{27},-1),(3-\sqrt{27},-1)$
9a. 1.0 m
9b. 1.6 m
11a. $240 \mathrm{r} / \mathrm{min}$
11b. $18.6 \mathrm{mi} / \mathrm{h}$
11c. $6.3 \mathrm{mi} / \mathrm{h}$
13. $y=-(x+3)^{2}+2$
15. $y=2 x^{2}-24 x+117$

LESSON 9.3

1a. $(1,0.5)$
1b. $y=8$
1c. $(9,2)$
3a. focus: $(0,6)$; directrix: $y=4$
3b. focus: $(-1.75,-2)$; directrix: $x=-2.25$
3c. focus: $(-3,0)$; directrix: $y=1$
3d. focus: (3.875, 0); directrix: $x=4.125$
3e. focus: $(-1,5)$; directrix: $y=1$
3f. focus: $\left(\frac{61}{12}, 0\right)$; directrix: $x=\frac{11}{12}$
5a. $x=t^{2}, y=t+2$
5b. $x=t, y=-t^{2}+4$
5c. $x=2 t+3, y=t^{2}-1$
5d. $x=-t^{2}-6, y=3 t+2$
7. The path is parabolic. If you locate the rock at $(0,2)$ and the shoreline at $y=0$, the equation is $y=\frac{1}{4} x^{2}+1$.
9. $y=\frac{1}{8}(x-1)^{2}+1$

11a, c.

$(0.5,2) ; m=2$
11b. $(2,0)$

11d.

$m=0$
11 e.

$$
m=-\frac{4}{3}
$$

11f. $63.4^{\circ} ; 63.4^{\circ}$; the angles are congruent.
13. $\frac{\sqrt{3}}{2} ;\left(\pm \frac{\sqrt{2}}{2}, \frac{1}{2}\right)$

15a. $\pm 1, \pm 2, \pm 5, \pm 10, \pm \frac{1}{2}, \pm \frac{5}{2}$
15b. $\frac{1}{2}$ is the only rational root.
15c. $f(x)=(2 x-1)(x-1+3 i)(x-1-3 i)$

LESSON 9.4

1a. vertices: $(-2,0)$ and $(2,0)$; asymptotes: $y= \pm 2 x$

1b. vertices: $(2,-1)$ and $(2,-3)$; asymptotes: $y=\frac{1}{3} x-\frac{8}{3}$ and $y=-\frac{1}{3} x-\frac{4}{3}$

1c. vertices: $(1,1)$ and (7,1); asymptotes: $y=x-3$ and $y=-x+5$

1d. vertices: $(-2,1)$ and $(-2,-3)$; asymptotes: $y=\frac{2}{3} x+\frac{1}{3}$ and $y=-\frac{2}{3} x-\frac{7}{3}$

1e. vertices: $(-5,3)$ and $(3,3)$; asymptotes: $y=0.5 x$ +3.5 and $y=-0.5 x+2.5$

1f. vertices: $(3,5)$ and $(3,-5)$; asymptotes: $y=\frac{5}{3} x-5$ and $y=-\frac{5}{3} x+5$

3a. $\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{1}\right)^{2}=1 \quad$ 3b. $\left(\frac{y+3}{2}\right)^{2}-\left(\frac{x-3}{2}\right)^{2}=1$
3c. $\left(\frac{x+2}{3}\right)^{2}-\left(\frac{y-1}{4}\right)^{2}=1$
3d. $\left(\frac{y-1}{4}\right)^{2}-\left(\frac{x+2}{3}\right)^{2}=1$
5a. $y= \pm 0.5 x \quad$ 5b. $y=x-6$ and $y=-x$
5c. $y=\frac{4}{3} x+\frac{11}{3}$ and $y=-\frac{4}{3} x-\frac{5}{3}$

5d. $y=\frac{4}{3} x+\frac{11}{3}$ and $y=-\frac{4}{3} x-\frac{5}{3}$
7. $\left(\frac{x-1}{5}\right)^{2}-\left(\frac{y-1}{\sqrt{11}}\right)^{2}=1$

9a. possible answer: $\left(\frac{x-1}{2}\right)^{2}-\left(\frac{y}{3}\right)^{2}=1$
9b. possible answer: $\left(\frac{y+2}{3}\right)^{2}-\left(\frac{x+4.5}{2.5}\right)^{2}=1$

11a.

11b.

11c.

11d.

11e. The resulting shapes are a paraboloid, a sphere, an ellipsoid, and a hyperboloid.

13. $0=4-(x-3)^{2} ; x=1$ or $x=5$

15a. possible answer: $y=-\frac{1}{8}(x-10)^{2}+17.5$
15b. approximately 18.5 ft or 1.5 ft
17a. $s=s_{0}\left(\frac{1}{2}\right)^{t / 1620}$
17b. 326 g
17c. 13,331 yr

LESSON 9.5

1a. $x^{2}+14 x-9 y+148=0$
1b. $x^{2}+9 y^{2}-14 x+198 y+1129=0$
1c. $x^{2}+y^{2}-2 x+6 y+5=0$
1d. $9 x^{2}-4 y^{2}-36 x-24 y-36=0$
3a. $\left(\frac{y-3}{6}\right)^{2}-\left(\frac{x-8}{\sqrt{72}}\right)^{2}=1$; hyperbola
3b. $\left(\frac{x-3}{6}\right)^{2}+\left(\frac{y-8}{\sqrt{72}}\right)^{2}=1$, or
$\left(\frac{x-3}{6}\right)^{2}+\left(\frac{y-8}{6 \sqrt{2}}\right)^{2}=1$; ellipse
3c. $\left(\frac{x+5}{\sqrt{5}}\right)^{2}=\frac{(y-15.8)}{-3}$; parabola
3d. $(x+2)^{2}+y^{2}=5.2$; circle
5a. $y=\frac{ \pm \sqrt{400 x^{2}+1600}}{-8}$ or $y=\mp \frac{5}{2} \sqrt{x^{2}+4}$

[-18.8, 18.8, 2, -12.4, 12.4, 2]
5b. $y=\frac{-16 \pm \sqrt{160 x-320}}{8}$ or
$y=\frac{-4 \pm \sqrt{10 x-20}}{2}$

[-9.4, 9.4, 1, -6.2, 6.2, 1]

5c. $y=\frac{8 \pm \sqrt{-64 x^{2}-384 x-560}}{8}$ or $y=1 \pm \frac{\sqrt{-16 x^{2}-96 x-140}}{4}$

[-4.7, 4.7, 1, - 3.1, 3.1, 1]
5d. $y=\frac{-20 \pm \sqrt{-60 x^{2}+240 x+240}}{10}$ or $y=-2 \pm \frac{\sqrt{-15 x^{2}+60 x+60}}{5}$

[-2.7, 6.7, 1, -5.1, 1.1, 1]
7. approximately 26.7 mi east and 13.7 mi north of the first station, or approximately 26.7 mi east and 13.7 mi south of the first station

9a, b. These constructions will result in a diagram similar to the one shown on page 532 .
9c. $\triangle P A G$ is an isosceles triangle, so $P A=P G$. So $F P+G P$ remains constant because they sum to the radius.
9d. An ellipse. The sum of the distances to two points remains constant.
9e. Moving G within the circle creates other ellipses. The closer P is to G, the less eccentric the ellipse. Locations outside the circle produce hyperbolas.
11. $x^{2}+y^{2}=11.52$

13a. $(-2,5+2 \sqrt{5})$ and $(-2,5-2 \sqrt{5})$
13b. $\left(1+\frac{\sqrt{3}}{2},-2\right)$ and $\left(1-\frac{\sqrt{3}}{2},-2\right)$
15. 113°
17. square, trapezoid, kite, triangle, pentagon

LESSON 9.6

1a. $f(x)=\frac{1}{x}+2$
1b. $f(x)=\frac{1}{x-3}$

[-9.4, 9.4, 1, -6.2, 6.2, 1] [-9.4, 9.4, 1, -6.2, 6.2, 1]
1c. $f(x)=\frac{1}{x+4}-1 \quad$ 1d. $f(x)=2\left(\frac{1}{x}\right)$ or $f(x)=\frac{2}{x}$

[-9.4, 9.4, 1, -6.2, 6.2, 1]
1e. $f(x)=3\left(\frac{1}{x}\right)+1$ or $f(x)=\frac{3}{x}+1$

[-9.4, 9.4, 1, -6.2, 6.2, 1]
3a. $x=-4$
3b. $x=\frac{113}{18}$ or $x=6.2 \overline{7}$
3c. $x=2.6$
3d. $x=-8.5$
5. 12 games
7a. 20.9 mL
7b. $f(x)=\frac{20.9+x}{55+x}$
7c. 39.72 mL

7d. The graph approaches $y=1$.
9a. i. $y=2+\frac{-3}{x-5}$
9a. ii. $y=3+\frac{2}{x+3}$

9b. i. Stretch vertically by a factor of -3 , and translate right 5 units and up 2 units.
$\mathbf{9 b}$. ii. Stretch vertically by a factor of 2 , and translate left 3 units and up 3 units.

9c. i.

$$
[-9.4,9.4,1,-6.2,6.2,1]
$$

9c. ii.

[-9.4, 9.4, 1, -6.2, 6.2, 1]
11a. a rotated hyperbola

$[-5,5,1,-5,5,1]$
11b. The inverse variation function, $y=\frac{1}{x}$, can be converted to the form $x y=1$, which is a conic section. Its graph is a rotated hyperbola.
11c. $x y-3 x-2 y+5=0 ; A=0, B=1, C=0$, $D=-3, E=-5, F=5$
13. Hint: Graph $y=\frac{1}{x}$ and plot the foci $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$. Measure the distance from both foci to points on the curve, and verify that the difference of the distances is constant.
15. $(x-2)^{2}+(y+3)^{2}=16$

17a. 53° to the riverbank 17b. 375 m
17c. $x=5 t \cos 37^{\circ}, y=5 t \sin 37^{\circ}-3 t$
19a. $b=\sqrt{3}, c=2$
19b. $a=1, c=\sqrt{2}$
19c. $b=\frac{1}{2}, c=1$
19d. $a=\frac{\sqrt{2}}{2}, c=1$
19e. $\frac{\sqrt{2}}{2}: \frac{\sqrt{2}}{2}: 1 ; \frac{1}{2}: \frac{\sqrt{3}}{2}: 1$

LESSON 9.7

1a. $\frac{(x+3)(x+4)}{(x+2)(x-2)}$
1b. $\frac{x(x-7)(x+2)}{(x+1)(x+1)}$
3a. $\frac{7 x-7}{x-2}$
3b. $\frac{-7 x+12}{2 x-1}$
5a. $y=\frac{x+2}{x+2}$
5b. $y=\frac{-2(x-3)}{x-3}$
5c. $y=\frac{(x+2)(x+1)}{x+1}$

7a. vertical asymptote $x=0$,
slant asymptote $y=x-2$
7b. vertical asymptote $x=1$,
slant asymptote $y=-2 x+3$
7c. hole at $x=2$
7d. For 7a: $y=\frac{x^{2}-2 x+1}{x}$. The denominator is 0 and the numerator is nonzero when $x=0$, so the vertical asymptote is $x=0$.

For 7b: $y=\frac{-2 x^{2}+5 x-1}{x-1}$. The denominator is 0 and the numerator is nonzero when $x=1$, so the vertical asymptote is $x=1$.
For 7c: $y=\frac{3 x-6}{x-2}$. A zero occurs once in both the numerator and denominator when $x=2$. This causes a hole in the graph.
9. $y=\frac{-(x+2)(x-6)}{3(x-2)}$

11a. $x=3 \pm \sqrt{2}$
13a.

11b. $x=\frac{3 \pm i \sqrt{7}}{2}$
13b. The height gets larger as the radius gets smaller. The radius must be greater than 2.

13d. $h=\frac{V}{\pi\left(x^{2}-4\right)}$
13c. $V=\pi x^{2} h-4 \pi h$

13e. approximately 400 units 3
15a. $83 \frac{1}{3}$ g; approximately 17% almonds and 43% peanuts
15b. 50 g; approximately 27.3% almonds, 27.3% cashews, and 45.5% peanuts

LESSON 9.8

1a. $\frac{x(x+2)}{(x-2)(x+2)}=\frac{x}{x-2}$
1b. $\frac{(x-1)(x-4)}{(x+1)(x-1)}=\frac{x-4}{x+1}$
1c. $\frac{3 x(x-2)}{(x-4)(x-2)}=\frac{3 x}{x-4}$
1d. $\frac{(x+5)(x-2)}{(x+5)(x-5)}=\frac{x-2}{x-5}$
3a. $\frac{(2 x-3)(x+1)}{(x+3)(x-2)(x-3)}$
3b. $\frac{-x^{2}+6}{(x+2)(x+3)(x-2)}$
3c. $\frac{2 x^{2}-x+9}{(x-3)(x+2)(x+3)}$
3d. $\frac{2 x^{2}-5 x+6}{(x+1)(x-2)(x-1)}$
5a. $\frac{2(x-2)}{x+1}$
5b. 1
7a. $x=3$ is a zero, because that value causes the numerator to be 0 . The vertical asymptotes are $x=2$ and $x=-2$, because these values make the denominator 0 and do not also make the numerator 0 . The horizontal asymptote is $x=0$, because this is the value that y approaches when $|x|$ is large.

7 b.

9a. Answers will vary
9b. $-x^{2}+x y-y=0$; yes
9c. no
9d. not possible; no
9e. After reducing common factors, the degree of the numerator must be less than or equal to 2 , and the degree of the denominator must be 1 .
11a. $x=3, y=1$
11b. translation right 3 units and up 1 unit
11c. - 2
11d. $y=1-\frac{2}{x-3}$ or $y=\frac{x-5}{x-3}$
11e. x-intercept: 5; y-intercept: $\frac{5}{3}$
13a. \$370.09
13b. \$382.82
13c. \$383.75
13d. \$383.99

CHAPIER 9 REVIEW

1a.

1b.

1c.

1d.

3a. $y= \pm 0.5 x$
3b. $x^{2}-4 y^{2}-4=0$
3c. $d=0.5 x-\sqrt{\frac{x^{2}}{4}-1}$
3d. 1, 0.101, $0.050,0.010$; As x-values increase, the curve gets closer to the asymptote.
5. $(y-4)^{2}=\frac{x-3}{0.25}$; vertex: $(3,4)$, focus: $(4,4)$, directrix: $x=2$

7a. $y=1+\frac{1}{x+2}$ or $y=\frac{x+3}{x+2}$
7b. $y=-4+\frac{1}{x}$ or $y=\frac{-4 x+1}{x}$
9. Multiply the numerator and denominator by the factor $(x+3)$.
$y=\frac{(2 x-14)(x+3)}{(x-5)(x+3)}$
11a. $\frac{3 x^{2}+8 x+3}{(x-2)(x+1)(x+2)}$
11b. $\frac{3 x}{x+1} \quad$ 11c. $\frac{(x+1)^{2}(x-1)}{x(x-2)}$
13.

13a. $y=2|x|$
13b. $y=2|x-4|$
13c. $y=2|x-4|-3$
15a. Not possible. The number of columns in [A] must match the number of rows in $[B]$.
15b. Not possible. To add matrices, they must have the same dimensions.

15e. $\left[\begin{array}{rr}5 & -1 \\ -1 & 9\end{array}\right]$
17a. $7.5 \mathrm{yd} / \mathrm{s} \quad$ 17b. 27.5°
17c. $x=7.5 t \cos 27.5^{\circ}, y=7.5 t \sin 27.5^{\circ}$
17d. $x=100-7.5 t \cos 27.5^{\circ}, y=7.5 t \sin 27.5^{\circ}$
17e. midfield (50, 26), after 7.5 s
19a. $\left(\frac{y}{5}\right)^{2}-\left(\frac{x}{2}\right)^{2}=1$; hyperbola
19b. $(y+2)^{2}=\frac{(x-2)}{\frac{2}{5}}$; parabola
19c. $(x+3)^{2}+(y-1)^{2}=\frac{1}{4}$; circle
19d. $\left(\frac{x-2}{\sqrt{8}}\right)^{2}+\left(\frac{y+2}{\sqrt{4.8}}\right)^{2}=1$
or $\left(\frac{x-2}{2 \sqrt{2}}\right)^{2}+\left(\frac{y+2}{2 \sqrt{1.2}}\right)^{2}=1$; ellipse
21a. $x \approx 1.64$
21b. $x \approx-0.66$
21c. $x=15$
21d. $x \approx 2.57$
21e. $x \approx 17.78$
21f. $x=3$
21g. $x=2$
21h. $x=495$
21i. $x \approx \pm 4.14$
23. Bases are home $(0,0)$, first $(90,0)$, second (90, 90), and third (0, 90).
Deanna: $x=90, y=28 t+12$
ball: $x=125(t-1.5) \cos 45^{\circ}, y=125(t-1.5) \sin$ 45° Deanna reaches second base after 2.79 s , ball reaches second base after 2.52 s . Deanna is out.

CHAPTER $10 \cdot$ CHAPTER 10 CHAPTER $10 \cdot$ CHAPTER

LESSON 10.1

1.

approximately -0.866 m
3a. 2
3b. 4
5a. periodic, 180°
5b. not periodic
5c. periodic, 90°
5d. periodic, 180°
7. Quadrant I: $\cos \mathscr{e}$ and $\sin \mathscr{e}$ are positive;

Quadrant II: $\cos ^{\theta}$ is negative and $\sin ^{\theta}$ is positive;
Quadrant III: $\cos \varepsilon$ and $\sin थ$ are negative;
Quadrant IV: $\cos ^{\theta}$ is positive and $\sin ^{\theta}$ is negative.
9. $x=\left\{-270^{\circ},-90^{\circ}, 90^{\circ}, 270^{\circ}\right\}$

11a. $\theta=-15^{\circ}$
11b. $\theta=125^{\circ}$
11c. $\theta=-90^{\circ}$
11d. $\theta=48^{\circ}$
13a. $\theta=150^{\circ}$ and $\theta=210^{\circ}$
13b. $\theta=135^{\circ}$ and $\theta=225^{\circ}$
13c. $\theta \approx 217^{\circ}$ and $\theta \approx 323^{\circ}$
13d. $\theta=90^{\circ}$
15a.

[1970, 2000, 10, 0, 200, 50]
The data are cyclical and appear to have a shape like a sine or cosine curve.
15b. $10-11 \mathrm{yr}$
15c. in about 2001
17a. $43,200 \mathrm{~s}$
19a. $\frac{3}{x-4}$
19b. 2
19c. $\frac{2(3+a)}{6-a}$

LESSON 10.2

1a. $\frac{4 \pi}{9}$
1b. $\frac{19 \pi}{6}$
1c. -240°
1d. 220°
1e. -135°
1f. 540°
1g. -5π
1h. 150°

3a, b.

5. Less than; one rotation is 2π, which is more than 6.

7c. $\frac{\pi}{2} ; \frac{3 \pi}{2} ; 0, \pi$, and 2π
9a. $\frac{3}{2} ; \frac{3}{2}$
9b. $-2 ;-2$
9c. They are equal.
9d. approximately 2.414
11. $\frac{4 \pi}{3}$

11b. $\frac{7 \pi}{4}$
11c. $\frac{\pi}{3}$
13a. $A \approx 57.54 \mathrm{~cm}^{2}$
13b. $\frac{A}{64 \pi}=\frac{\frac{4 \pi}{7}}{2 \pi}$
13 c. $A=64 \pi \cdot \frac{\frac{4 \pi}{7}}{2 \pi} \approx 57.54 \mathrm{~cm}^{2}$
15a. $1037 \mathrm{mi} \quad$ 15b. $61.17^{\circ} \quad$ 15c. 2660 mi
17a. $y=-2(x+1)^{2}$
17b. $y+4=(x-2)^{2}$
17c. $y+2=\left|\frac{x+1}{2}\right|$
17d. $-\frac{y-2}{2}=|x-3|$
19a. 18 cm
19b. 169 cm
21. Hint: Construct $\overline{A P}, \overline{B P}$, and $\overline{C P}$. $\triangle A P C$ is isosceles because $\overline{A P}$ and $\overline{C P}$ are radii of the same circle. $\angle A B P$ measures 90° because the angle is inscribed in a semicircle. Use these facts to prove that $\triangle A B P \cong \triangle C B P$.

LESSON 10.3

1a. $y=\sin x+1$
1b. $y=\cos x-2$
1c. $y=\sin x-0.5$
1d. $y=-3 \cos x$
1e. $y=-2 \sin x$
1f. $y=2 \cos x+1$

3a. The k-value vertically translates the graph of the function.
3b. The b-value vertically stretches or shrinks the graph of the function. The absolute value of b represents the amplitude. When b is negative, the curve is reflected across the x-axis.
3c. The a-value horizontally stretches or shrinks the graph of the function. It also determines the period with the relationship $2 \pi a=$ period.
3d. The h-value horizontally translates the graph of the function. It represents the phase shift.
5. translate $y=\sin x$ left $\frac{\pi}{2}$ units

7a. Let x represent the number of days after a full moon (today), and let y represent the percentage of lit surface that is visible.
$y=0.5+0.5 \cos \left(\frac{2 \pi x}{28}\right)$
7b. 72%
7c. day 5
9. first row: $1 ; \frac{\sqrt{3}}{2} ; \frac{\sqrt{2}}{2} ; 0 ;-\frac{\sqrt{2}}{2} ;-1 ;-\frac{1}{2} ; \frac{1}{2} ; \frac{\sqrt{3}}{2}$; second row: $0 ; \frac{1}{2} ; \frac{\sqrt{2}}{2} ; 1 ; \frac{\sqrt{2}}{2} ; 0 ;-\frac{\sqrt{3}}{2} ;-\frac{\sqrt{3}}{2} ;-\frac{1}{2}$; third row: $0 ; \frac{1}{\sqrt{3}} ; 1$; undefined; $-1 ; 0 ; \sqrt{3} ;-\sqrt{3}$;
$-\frac{1}{\sqrt{3}}$
11a. $y=1.5 \cos 2\left(x+\frac{\pi}{2}\right)$
11b. $y=-3+2 \sin 4\left(x-\frac{\pi}{4}\right)$
11c. $y=3+2 \cos \frac{x-\pi}{3}$
13a. $0.79 \mathrm{~m} \quad$ 13b. $0.74 \mathrm{~m} \quad$ 13c. 0.81 m
15. See below.

17a. i. $y=-\frac{2}{3} x+4$
17a. ii. $y= \pm \sqrt{x+4}-2$
17a. iii. $y=\frac{\log (x+8)}{\log 1.3}-6$
17b. i.

$[-10,10,1,-10,10,1]$
17b. ii.

$[-10,10,1,-10,10,1]$
15. (Lesson 10.3)

Degrees	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°
Radians	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5 \pi}{12}$	$\frac{\pi}{2}$	$\frac{7 \pi}{12}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	$\frac{11 \pi}{12}$	π
Degrees	195°	210°	225°	240°	255°	270°	285°	300°	315°	330°	345°	360°	
Radians	$\frac{13 \pi}{12}$	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{17 \pi}{12}$	$\frac{3 \pi}{2}$	$\frac{19 \pi}{12}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	$\frac{23 \pi}{12}$	2π	

17b. iii.

$[-10,10,1,-10,10,1]$
17c. The inverses of i and iii are functions.

LESSON 10.4

1a. 27.8° and 0.49
1b. -14.3° and -0.25
1c. 144.2° and 2.52
1d. 11.3° and 0.20
3a-d. Hint: Graph $y=\sin x$ or $y=\cos x$ for $-2 \pi \leq x \leq 2 \pi$. Plot all points on the curve that have a y-value equal to the y-value of the expression on the right side of the equation. Then find the x-value at each of these points.
5. $-1 \leq \sin x \leq 1$. There is no angle whose sine is 1.28.

7a. $x \approx 0.485$ or $x \approx 2.656$
7b. $x \approx-2.517$ or $x \approx-3.766$
9. 106.9°

11a. Hint: Use your calculator.
11b. The domain is all real numbers. The range is $-\frac{\pi}{2} \leq \pi \leq \frac{\pi}{2}$. See graph for 11d.
11c. The function $y=\tan ^{-1} x$ is the portion of $x=\tan y$, such that $-\frac{\pi}{2}<y<\frac{\pi}{2}$ (or
$-90^{\circ}<y<90^{\circ}$).
11d.

$[-20,20,5,-3 \pi / 2,3 \pi / 2, \pi / 2]$
13. 650°

15a. $8.0 \cdot 10^{-4} \mathrm{~W} / \mathrm{m}^{2} ; 6.0 \cdot 10^{-4} \mathrm{~W} / \mathrm{m}^{2}$
15b. $\theta=45^{\circ} \quad$ 15c. $\theta=90^{\circ}$
17a. $y=\tan \frac{x+\frac{\pi}{2}}{2}$
17a. $y=1-0.5 \tan \left(x-\frac{\pi}{2}\right)$
19a. Ellipse with center at origin, horizontal major axis of length 6 units, and vertical minor axis of length 4 units. The parametric equations are $x=3 \cos t$ and $y=2 \sin t$.

19b. $\left(\frac{x+1}{3}\right)^{2}+\left(\frac{y-2}{2}\right)^{2}=1 ; x=3 \cos t-1$ and $y=2 \sin t+2$
19c. approximately $(1.9,1.5)$ and $(-2.9,0.5)$
19d. (1.92, 1.54) and (-2.92, 0.46)

LESSON 10.5

1a. $x=\left\{\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}\right\}$
1b. $x=\left\{\frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{19 \pi}{6}, \frac{23 \pi}{6}\right\}$
3a. 5; 5
3b. 7; - 2; 12; 7
3c. $\frac{11}{2 \pi} ; 11$
3d. 9; 9
5. $y=1.2 \sin \frac{2 \pi t}{8}+2$ or $y=1.2 \sin \frac{\pi t}{4}+2$

7a. possible answer: $v=155.6 \sin (120 \pi t)$
7b.

9a. $y_{1}=-3 \cos \left(\frac{2 \pi(t+0.17)}{\frac{2}{3}}\right), y_{2}=-4 \cos \left(\frac{2 \pi t}{\frac{2}{3}}\right)$
9b. at $0.2,0.6,0.9,1.2,1.6,1.9$ s
11a. about 9.6 h
11b. March 21 and September 21 or 22
13. Construct a circle and its diameter for the main rotating arm. Construct a circle with a fixed radius these two circles. Animate them and one endpoint of the diameter.
15. The sector has the larger area. The triangle's area is $10.8 \mathrm{~cm}^{2}$; the sector's area is $12.5 \mathrm{~cm}^{2}$.
17a. $\pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$
17b. $x=\frac{1}{2}$
17c. $x= \pm \sqrt{5}$
17d. $P(x)=2\left(x-\frac{1}{2}\right)(x+\sqrt{5})(x-\sqrt{5})$

1. Graph $y=\frac{1}{\tan x}$.
2. Hint: Use the distributive property to rewrite the left side of the equation. Use a reciprocal trigonometric identity to rewrite $\cot A$, then simplify. Use a Pythagorean identity to complete the proof.
3. A trigonometric equation may be true for some, all, or none of the defined values of the variable. A trigonometric identity is a trigonometric equation that is true for all defined values of the variable.

7a. Hint: Replace $\cos 2 A$ with $\cos ^{2} A-\sin ^{2} A$. Rewrite $\cos ^{2} A$ using a Pythagorean identity. Then combine like terms.
7b. Hint: Replace $\cos 2 A$ with $\cos ^{2} A-\sin ^{2} A$. Rewrite $\sin ^{2} A$ using a Pythagorean identity. Then combine like terms.
9a. $y=\sin x$
9b. $y=\cos x$
9c. $y=\cot x$
9d. $y=\cos x$
9e. $y=-\sin x$
9f. $y=-\tan x$
9g. $y=\sin x$
9h. $y=-\sin x$
9i. $y=\tan x$

11a-c. Hint: Use the reciprocal trigonometric identities to graph each equation on your calculator, with window $[0,4 \pi, \pi / 2,-2,2,1]$.
13a. 2; undefined when θ equals 0 or π
13b. $3 \cos \theta$; undefined when θ equals $0, \frac{\pi}{2}$, π, or $\frac{3 \pi}{2}$
13c. $\tan ^{2} \theta+\tan \theta$; undefined when θ equals $\frac{\pi}{2}$ or $\frac{3 \pi}{2}$
13d. $\sec \theta$; undefined when θ equals $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, or 2π
15a. \$1505.12
15b. another 15 years, or until he's 32
17a. $c(x)=\frac{60+x}{100+x}$
17b. $66 \frac{2}{3} \%$
17c. 300 mL
17d.

$[0,1000,100,0,1,0.1]$
The asymptote is the line $y=1$. The more pure medicine that is added the closer the concentration will get to 100%, but it will never actually become 100\%.

17e. Use the diluting function to obtain concentrations less than 60%. Use the concentrating function to obtain concentrations greater than 60\%.

1a. not an identity
1b. not an identity
1c. not an identity
3a. $\cos 1.1$
3c. $\sin 1.7$
5. $\frac{4 \sqrt{5}}{9}$
7. Hint: Begin by writing $\sin (A-B)$ as $\sin (A+(-B))$. Then use the sum identity given in Exercise 6. Next, use the identities $\cos (-x)=\cos x$ and $\sin (-x)=-\sin x$ to simplify further.
9. Hint: Begin by writing $\sin 2 A$ as $\sin (A+A)$. Then use a sum identity to expand, and simplify by combining like terms.
11. Hint: Show that $\tan (A+B) \neq \tan A+\tan B$ by substituting values for A and B and evaluating. To find an identity for $\tan (A+B)$, first rewrite as $\frac{\sin (A+B)}{\cos (A+B)}$. Then use sum identities to expand. Divide both the numerator and denominator by $\cos A \cos B$, and rewrite each occurrence of $\frac{\sin \theta}{\cos \theta}$ as $\tan \theta$.
13a. Hint: Solve $\cos 2 A=1-2 \sin ^{2} A$ for $\sin ^{2} A$.
13b. Hint: Solve $\cos 2 A=2 \cos ^{2} A-1$ for $\cos ^{2} A$.
15a. Period: $8 \pi, 12 \pi, 20 \pi, 24 \pi, 12 \pi$
15b. The period is 2π multiplied by the least common multiple of a and b.
15c. 48π; multiply 2π by the least common multiple of 3,4 , and 8 , which is 24 .
17a. $x \approx-1.2361$
17b. $x \approx 1.1547$
17c. $x \approx 1.0141$
17d. $x=0$

19a. Let x represent time in minutes, and let y represent height in meters above the surface of the water if it was calm.

19b. $y=0.75 \cos \frac{\pi}{3} x$
19c. $y=0.75 \sin \left(\frac{\pi}{3}(x+1.5)\right)$

CHAPTER 10 REVEW

1a. I; $420^{\circ} ; \frac{\pi}{3}$
1b. III; $\frac{10 \pi}{3} ; 240^{\circ}$
1c. IV; $-30^{\circ} ; \frac{11 \pi}{6}$
1d. IV; $\frac{7 \pi}{4} ;-45^{\circ}$
3. Other equations are possible.

LESSON 112

3a. period $=\frac{2 \pi}{3} ; y=-2 \cos \left(3\left(x-\frac{2 \pi}{3}\right)\right)$
3b. period $=\frac{\pi}{2} ; y=3 \sin \left(4\left(x-\frac{\pi}{8}\right)\right)$
3c. period $=\pi ; y=\csc \left(2\left(x+\frac{\pi}{4}\right)\right)$
3d. period $=\frac{\pi}{2} ; y=\cot \left(2\left(x-\frac{\pi}{4}\right)\right)+1$
5a. $y=-2 \sin (2 x)-1$
5b. $y=\sin (0.5 x)+1.5$
5c. $y=0.5 \tan \left(x-\frac{\pi}{4}\right)$
5d. $y=0.5 \sec (2 x)$
7. $\cos y=x$: domain: $-1 \leq x \leq 1$; range: all real numbers.
$y=\cos ^{-1} x$: domain: $-1 \leq x \leq 1$;
range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
9. $y=-3 \sin \left(\frac{x-\frac{\pi}{2}}{4}\right)$
11. $0.174 \mathrm{~s}, 0.659 \mathrm{~s}, 1.008 \mathrm{~s}, 1.492 \mathrm{~s}, 1.841 \mathrm{~s}$, 2.325 s, 2.675 s

CHAPTER 11 . CHAPTER 11 CHAPTER 11 . CHAPTER
LESSON 111

1. $-3,-1.5,0,1.5,3 ; u_{1}=-3, d=1.5$

3a. $3+4+5+6 ; 18$
3b. $-2+1+6 ; 5$
5. $S_{75}=5700$

7a. $u_{46}=229$
7b. $u_{n}=5 n-1$, or $u_{1}=4$ and $u_{n}=u_{n-1}+5$
where $n \geq 2$
7c. $S_{46}=5359$
9a. $3,6,9,12,15,18,21,24,27,30$
9b. $u_{1}=3$ and $u_{n}=u_{n-1}+3$ where $n \geq 2$
9c. 3384 cans 9d. 13 rows with 15 cans left over
11. $S_{x}=x^{2}+64 x$

13a. $u_{1}=4.9$ and $u_{n}=u_{n-1}+9.8$ where $n \geq 2$
13b. $u_{n}=9.8 n-4.9$
13c. 93.1 m
13d. 490
m
13e. $S_{n}=4.9 n^{2} \quad$ 13f. approximately 8.2 s
15a. 576,443 people
15b. 641,676 people
17a. 81, 27, 9, 3, 1, $\frac{1}{3}$
17b. $u_{1}=81$ and $u_{n}=\frac{1}{3} u_{n-1}$ where $n \geq 2$
19a. $\frac{\sqrt{6}+\sqrt{2}}{4}$
19b. $\frac{\sqrt{6}-\sqrt{2}}{4}$

1a. $u_{1}=12, r=0.4, n=8$
1a. $0.4+0.04+0.004+\ldots$
1b. $u_{1}=0.4, r=0.1$
1c. $S=\frac{4}{9}$
3a. $0.123+0.000123+0.000000123+\ldots$
3b. $u_{1}=0.123, r=0.001$
3c. $S=\frac{123}{999}=\frac{41}{333}$
5. $u_{1}=32768$

7a. $96,24,6,1.5,0.375 .0 .09375,0.0234375$, $0.005859375,0.00146484375,0.0003662109375$
7b. $S_{10} \approx 128.000$
7c.

$[0,10,1,0,150,25]$
7d. $S=128$
9a. $\$ 25,000,000$
9b. \$62,500,000

9c. 2.5
9d. 44.4\%
11a. $\sqrt{2}$ in.
11b. 0.125 in. 2
11c. approximately 109.25 in.
11d. 128 in. 2
13. 88 gal

15a. \$56,625
15b. 43 wk

LESSON 113

1b. $u_{1}=75, r=1.2, n=15$
1c. $u_{1}=40, r=0.8, n=20$
1d. $u_{1}=60, r=2.5, n=6$
3a. $S_{5}=92.224 \quad$ 3b. $S_{15} \approx 99.952$ 3c. $S_{25} \approx 99.999$
5a. 3069
5b. 22
5c. 2.8
5d. 0.95
7a. $S_{10}=15.984375$
7b. $S_{20} \approx 15.99998474$
7c. $S_{30} \approx 15.99999999$
7d. They continue to increase, but by a smaller amount each time.
9a. i. $128 \quad$ 9a. ii. more than 9×10^{18}
9a. iii. 255
9b. $\sum_{n=1}^{64} 2^{n-1}$
11a. $5,15,35,75,155,315,635$

11b. No, they form a shifted geometric sequence.
11c. not possible
13a. $1+4+9+16+25+36+49=140$
13b. $9+16+25+36+49=135$
15. $\$ 637.95$
17. Yes. The long-run height is only 24 in.

CHAPIER 11 REVEW

1a. $u_{128}=511$
1b. $u_{40}=159$
1c. $u_{20}=79$
1d. $S_{20}=820$

3a. 144; 1728; 20,736; 429,981,696
3b. $u_{1}=12$ and $u_{n}=12 u_{n-1}$ where $n \geq 2$
3c. $u_{n}=12^{n} \quad$ 3d. approximately 1.2×10^{14}
5a. approximately 56.49 ft
5b. 60 ft
7a. $S_{10} \approx 12.957 ; S_{40} \approx 13.333$
7b. $S_{10} \approx 170.478 ; S_{40} \approx 481571.531$
7c. $S_{10}=40 ; S_{40}=160$
7d. For $r=0.7$

$[0,40,1,0,20,1]$
For $r=1$

$[0,40,1,0,200,10]$
7e. 0.7

LESSON 121

1a. $\frac{6}{15}=.4$
1b. $\frac{7}{15} \approx .467$
3a. $\frac{4}{14} \approx .286$
3b. $\frac{10}{14} \approx .714$
1c. $\frac{2}{15} \approx .133$

3d. $\frac{1.5}{14} \approx .107$
3e. $\frac{2}{14} \approx .143$
5a. experimental
5b. theoretical
5c. experimental
7. Hint: Consider whether each of the integers 0-9 are equally likely. Each of the procedures has shortcomings, but 7iii is the best method.

9a. 36
9b. $6 ; \frac{1}{6} \approx .167$

9c. $12 ; \frac{12}{36} \approx .333$
9d. $3 ; \frac{3}{36} \approx .083$
11a. 144 square units
11b. 44 square units
11c. $\frac{44}{144}$
11d. $\frac{44}{144} \approx .306$
11e. $\frac{100}{144} \approx .694$
11f. $0 ; 0$
13a. 270
13b. 1380
13c. $\frac{270}{1380} \approx .196$
13d. $\frac{1110}{1380} \approx .804$
15a. 53 pm , at point C
15b. 0 pm , at point A, the nucleus
15c. The probability starts at zero at the nucleus, increases and peaks at a distance of 53 pm , and then decreases quickly, then more slowly, but never reaches zero.
17. $\log \left(\frac{a c^{2}}{b}\right)$

19a.

19b. $(2,9),(-6,-1),(6,-3)$
19c. 68 square units
21a. Set i should have a larger standard deviation because the values are more spread out.
21b. i. $\bar{x}=35, s \approx 22.3$; ii. $\bar{x}=117, s \approx 3.5$
21c. The original values of \bar{x} and s are multipied by 10.

21c. i. $\bar{x}=350, s \approx 223.5$
21c. ii. $\bar{x}=1170, s \approx 35.4$
21d. The original values of \bar{x} are increased by 10, and the original values of s are unchanged.
21d. i. $\bar{x}=45, s \approx 22.3 \quad$ 21d. ii. $\bar{x}=127, s \approx 3.5$
1.

3. $P(\mathrm{a})=.7 ; P(\mathrm{~b})=.3 ; P(\mathrm{c})=.18 ; P(\mathrm{~d})=.4$; $P(\mathrm{e})=.8 ; P(\mathrm{f})=.2 ; P(\mathrm{~g})=.08$
5. For the first choice, the probability of choosing a sophomore is $\frac{14}{21}$, and the probability of choosing a junior is $\frac{7}{21}$. Once the first student is chosen, the class total is reduced by 1 and either the junior or sophomore portion is reduced by 1.
7a. 24
7b. . 25
7c. $\frac{2}{24} \approx .083$
7d. $\frac{1}{24} \approx .042$
7e. $\frac{23}{24} \approx .958$
7f. $\frac{12}{24}=.5$
9a. 4
9b. 8
9c. 16
9d. 32
9e. 1024
9f. 2^{n}

11a. $P(M 3)=.45 ; P(G \mid M 1)=.95 ; P(D \mid M 2)=$ $.08 ; P(G \mid M 3)=.93 ; P(M 1$ and $D)=.01 ; P(M 1$ and $G)=.19 ; P(M 2$ and $D)=.028 ; P(M 2$ and $G)$
$=.332 ; P(M 3$ and $D)=.0315 ; P(M 3$ and $G)=$.4185

11b. .08

11c. 0695
11d. . 4029
13. $\frac{6}{16}=.375$

15a. 100,000
15b. 1,000,000,000
15c. 17,576,000
17a. $-3+2 i$
15d. 7,200,000

17c. $\frac{18}{29}+\frac{16}{29} i$
19a. $\frac{50}{110} \approx .455$
19b. $\frac{120}{230} \approx .522$

LESSON 123

1. 10% of the students are sophomores and not in advanced algebra. 15% are sophomores in advanced algebra. 12\% are in advanced algebra but are not sophomores. 62\% are neither sophomores nor in advanced algebra.

5a. Yes, because they do not overlap.
5b. No. $P(\mathrm{~A}$ and B$)=0$. This would be the same as $P(\mathrm{~A}) \cdot P(\mathrm{~B})$ if they were independent.
$7 a$.

7b. i. . 08
7b. ii. . 60
7b. iii. . 48
9.

11a.

11b. . 015
11c. . 42
13. approximately 77

15a. $3 \sqrt{2}$
15b. $3 \sqrt{6}$
15c. $2 x y^{2} \sqrt{15 x y}$
LESSON 12.4
1a. Yes; the number of children will be an integer, and it is based on a random process.
1b. No; the length may be a non-integer.
1c. Yes; there will be an integer number of pieces of mail, and it is based on random processes of who sends mail when.
3a. approximately . 068
3b. approximately . 221
5a. Answers will vary. Theoretically, after 10 games Sly should get about 23 points, and Andy should get 21.
5b. Answers will vary. Theoretically, it should be close to 47 .

5c.

5d. -0.25

5e. Answers will vary. One possible answer is 5 points for Sly if the sum of the dice is less than 8 and 7 points for Andy if the sum of the dice is greater than 7.

7c. \$28.33

9d. . 392
9e. geometric; $u_{1}=.20, r=.6$
9f. . 476672
9g. . 5
11a. . 580
11b. 0; 0.312; 0.346; 0.192; 0.124; 0
11c. 0.974
11d. On average, the engineer should expect to find 0.974 defective radio in a sample of 5 .
13.1

15a.

15b.

17. 44

LESSON 12.5
1a. Yes. Different arrangements of scoops are different.
1b. No. The order is not the same, so the arrangements should be counted separately if they are permutations.

1c. No. Repetition is not allowed in permutations.
1d. No. Repetition is not allowed in permutations.
3a. 210
3b. 5040
3c. $\frac{(n+2)!}{2}$
3d. $\frac{n!}{2}$
5a. $10000 ; 27 . \overline{7} \mathrm{hr}$
5b. 100000; approximately 11.57 days
5c. 10
7. r factors
9a. 40,320
9b. 5040
9c. 125

9d. Sample answer: There are eight possible positions for Volume 5, all equally likely. So
$P(5$ in rightmost slot $)=\frac{1}{8}=.125$.
9e. .5; sample answer: there are four books that can be arranged in the rightmost position. Therefore, the number of ways the books can be arranged is
$7!\cdot 4=20,160$.
9f. 1
9g. 40,319
9h. $\frac{1}{40320} \approx .000025$

11a. approximately .070
11b. approximately . 005
11c. approximately . 155
11d. $\$ 3.20$
13a. $\frac{30}{50}=.6$
13b. $\frac{16}{30} \approx .533$
15a. $\frac{1}{8}=.125$
15b. $\frac{3}{8}=.375$
15c. $\frac{1}{2}=.5$
17a. 41
17b. about 808.3 in. ${ }^{2}$
LESSON 126
1a. 120
1b. 35
1c. 105
1d. 1

3a. $\frac{{ }_{2} P_{2}}{2!}={ }_{7} C_{2}$
3b. $\frac{{ }_{7} P_{3}}{3!}={ }_{7} C_{3}$
3c. $\frac{{ }_{7} P_{4}}{4!}={ }_{7} C_{4}$
3d. $\frac{7^{\prime} P_{7}}{7!}={ }_{7} C_{7}$
3e. $\frac{n P_{\gamma}}{r!}={ }_{n} C_{\gamma}$
5. $n=7$ and $r=3$, or $n=7$ and $r=4$, or $n=35$ and $r=1$, or $n=35$ and $r=34$
7a. 35
7b. $\frac{20}{35} \approx .571$
9a. 4
9b. 8
9c. 16

9d. The sum of all possible combinations of n things is $2^{n} ; 2^{5}=32$.
11a. 6
11b. 10
11c. 36

11d. $n_{2}=\frac{n!}{2(n-2)!}$
13a. $x^{2}+2 x y+y^{2}$
13b. $x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$
13c. $x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
15a. . 0194 is the probability that someone is healthy and tests positive.

15b. . 02 is the probability that a healthy person tests positive.
15c. .0491 is the probability that a person tests positive.
15d. . 395 is the probability that a person who tests positive is healthy.
17. approximately 19.5 m ; approximately 26.2 m

LESSON 12.7

1a. x^{47}
1b. $5,178,066,751 x^{37} y^{10}$
1c. $62,891,499 x^{7} y^{40}$
1d. $47 x y^{46}$
3a. . 299
3b. .795, . 496
3c. .203, .502, . 791
3d. Both the "at most" and "at least" numbers include the case of "exactly." For example, if "exactly" 5 birds (.165) is subtracted from "at least" 5 birds (.203), the result (.038) is the same as $1-.962$ ("at most" 5 birds).
3e. The probability that at least 5 birds survive is 20.3%.
5. $p<\frac{25}{33}$

7a. $x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
7b. $p^{5}+5 p^{4} q+10 p^{3} q^{2}+10 p^{2} q^{3}+5 p q^{4}+q^{5}$
7c. $8 x^{3}+36 x^{2}+54 x+27$
7d. $81 x^{4}-432 x^{3}+864 x^{2}-768 x+256$
9a. . 401
9b. 940
9c. $\mathrm{Y} 1={ }_{30} C_{x}(.97)^{30-x}(.03)^{X}$
9d. . 940
11a. 000257 11b. 446 11c. 983
13. Answers will vary. This event will happen in 15.6% of trials.
15a. 2; 2.25; ※2.370; 2.441
15b. $f(10) \approx 2.5937, f(100) \approx 2.7048$,
$f(1000) \approx 2.7169, f(10000) \approx 2.7181$
15c. There is a long-run value of about 2.718.
17. $37.44 \mathrm{~cm}^{2}$

19a. Hint: Graph data in the form (distance, period), (log (distance), period), (distance, log(period)), and (log (distance), log (period)), and identify which is the most linear. Find an equation to fit the most linear data you find, then substitute the appropriate variables (distance, period, $\log ($ distance $), \log ($ period $)$) for x and y, and solve for y. You should find that period \approx distance $e^{1.50} \times 10^{-9.38}$.
19b. Hint: Substitute the period and distance values given in the table into your equation from 19a. Errors are most likely due to rounding.
19c. period $^{2}=10^{-18.76}$ distance ${ }^{3}$

CHAPTER 12 REVIEW

1. Answers will vary. You might number 10 chips or slips of paper and select one. You might look at a random-number table and select the first digit of each number. You could alter the program Generate to :Int 10Rand +1 .

3a. . 5
5a.

5b. . 0517
7. 110.5
9. . 044

CHAPTER 13 • CHAPTER 13 CHAPTER 13 • CHAPTER LESSON 13.1
1a. $\frac{1}{8}$
1b. $\frac{1}{12}$
1c. $\frac{1}{10}$
1d. $\frac{1}{10}$
3. Answers will vary.

3a. $\sqrt{8}=2 \sqrt{2}$
3b. $\sqrt{12}=2 \sqrt{3}$
3c. 2.5
3d. $3 \frac{1}{3}$
5.

7a. true

5d. . 3501
5c. . 8946

3b. 17.765 square units

13b, d.

13c. 15-18 min
15. . 022
17. $Q R$ is 0 when P overlaps R, then grows larger and larger without bound until P reaches the y-axis, at which point Q is undefined because $\overleftrightarrow{P O}$ and $\overleftrightarrow{R T}$ are parallel and do not intersect. As P moves through Quadrant II, $Q R$ decreases to 0 . Then, as P moves through Quadrant III, $Q R$ increases, again without bound. When P reaches the y-axis, point Q is again undefined. As P moves through Quadrant IV, $Q R$ again decreases to 0 . These patterns correspond to the zeros and vertical asymptotes of the graph in Exercise 16.
19. In all cases, the area remains the same. The relationship holds for all two-dimensional figures.

LESSON 13.2

1a. Hint: Enter the expressions as Y1 and Y2. Then graph or create a table of values, and confirm that they are the same.
1b. $y \approx .242$ and $n(x, 0,1) \approx .242$
3a. $\mu=18, \sigma \approx 2.5$
3b. $\mu=10, \sigma \approx 0.8$
3c. $\mu \approx 68, \sigma \approx 6$
3d. $\mu \approx 0.47, \sigma \approx 0.12$
5.

$[-0.6,4.2,1,-0.1,0.6,0]$

7a.

[14.7, 18.9, 1, - 0.1, 0.6, 0]
7b. 12.7%. Sample answer: No, more than 10% of boxes do not meet minimum weight requirements.

11a. $\mu=79.1, \sigma \approx 7.49$

[60, 100, 2, - 1, 10, 2]
11b. sample answer:

11c. $y=\frac{1}{7.49 \sqrt{2 \pi}}(\sqrt{e})-((x-79.1) / 7.49)^{2}$
11d. Answers will vary. The data do not appear to be normally distributed. They seem to be approximately symmetrically distributed with several peaks.

13a. Hint: Consider what the mean and standard deviation tell you about the distribution of test scores. Can you be sure which test is more difficult?
13b. The French exam, because it has the greatest standard deviation

13c. Hint: Determine how many standard deviations each student's score is from the mean. This will tell you how each student scored relative to other test-takers.
15. 25344

LESSON 13.3

1. Hint: See page 746.
3a. 122.6
3b. 129.8
3c. 131.96
3d. 123.8
5a. $z=1.8$
5b. $z=-0.67$
5c. approximately .71
7a. (3.058, 3.142)
7b. (3.049, 3.151)
7c. (3.034, 3.166)
9a. decrease
9b. increase
9c. stay the same size
9d. increase
11a. between 204.6 and 210.6 passengers
11b. .07

13a. $a=0.0125$
13b. . 6875
13c. . 1875
13e. 0
13d. 0
15a. Let n represent the number of months, and let S_{n} represent the cumulated total.
Plan 1: $S_{n}=398 n+2 n^{2}$; Plan 2:
$S_{n}=\frac{75\left(1-1.025^{n}\right)}{1-1.025}$
15b.

[$0,200,50,0,150000,10000]$
15c. If you stay 11 years 9 months or less, choose Plan 2. If you stay longer, choose Plan 1.

LESSON 13.4

1a. 33.85%
1b. 20.23\%
1c. 10.56%
1d. 0.6210%
3. 31.28%
5a. $224<\mu<236$
5b. $227.6<\mu<232.4$
5c. $228<\mu<232$
7. $s=0.43$

9a. 5 samples
9b. $\bar{x}=0.56, s=0.20$
9c. approximately 0
9d. probably, because these results are highly unlikely if the site is contaminated
11. The graph appears to sit on a horizontal line. The graph is skewed; it doesn't have a line of symmetry.
13. $y=4.53 x+12.98 ; 6.2$

LESSON 13.5
1a. . 95
1b. -.95
1c. - . 6
1d. . 9
3a. -33
3b. 17; 4
3c. 6; 2.1213
3d. - 9723

3e. There is a strong negative correlation in the data.
3f. Hint: Do the points seem to decrease linearly?

5a. correlation; weight gain probably has more to do with amount of physical activity than television ownership
5b. correlation; the age of the children may be the variable controlling both size of feet and reading ability
5c. correlation; the size of a fire may be the variable controlling both the number of firefighters and the length of time
7. $r \approx .915$. There is a strong positive correlation between the number of students and the number of faculty.
9a. $r=-1$. This value of r implies perfect negative correlation, which is consistent with the data.
$\mathbf{9 b} . r \approx .833$. This value of r implies strong positive correlation, but the data suggest negative correlation with one outlier.
9c. $r=0$. This value of r implies no correlation, but the data suggest negative correlation with one outlier.

9d. Yes, one outlier can drastically affect the value of r.
13. possible answer: $y=-1.5 x+6$
15. $60 \mathrm{~km} / \mathrm{h}$

LESSON 13.6
$\begin{array}{lll}\text { 1a. } \bar{x}=1975 & \text { 1b. } \bar{y}=40.15 & \text { 1c. } s_{X}=18.71\end{array}$
1d. $s_{y}=8.17$
1e. $r \approx .9954$
3a. $0.3166,-0.2292,0.1251,0.1794,-1.3663,0.9880$
3b. 0.01365
3c. $0.1002,0.0525,0.0157,0.0322,1.8667,0.9761$
3d. $3.0435 \quad$ 3e. 0.8723
5a.

[1978, 1990, 1, 85, 105, 5]
$\hat{y}=1.3115 x-2505.3782$
5b. 124.2 ppt
5c.

[1979, 1998, 1, 85, 105, 5]
$\hat{y}=-0.7714 x+1639.4179$

5d. 92.8 ppt. This is 31.4 ppt lower than the amount predicted in 5 b .
7a. $\hat{y}=-1.212 x+110.2$
7b. possible answer: $10^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{N}$
7c. The cities that appear not to follow the pattern are Denver, which is a high mountainous city;
Mexico City, which is also a high mountainous city; Phoenix, which is in desert terrain; Quebec, which is subject to the Atlantic currents; and Vancouver, which is subject to the Pacific currents.
7d. Answers will vary.
9. Hint: You may want to consider how many points are used to calculate each line of fit, whether each is affected by outliers, and which is easier to calculate by hand.
11a. $y=1000$ 11b. $y=\frac{100}{\sqrt{x}}$
13. $y=-6(x-1)(x+2)(x+5)$
15. The length will increase without bound.

LESSON 13.7
1a.

[0, 7, 1, 0, 80, 10]
1b.

[-0.1, 0.8, 0.1, 0, 80, 10]
1c.

[0, 6, 1, 0, 3, 1]
1d.

$[-0.1,0.8,0.1,0,3,1]$

1e. It is difficult to tell visually. But $(\log x, \log y)$ has the strongest correlation coefficient, $r \approx-.99994$.
3a. $\hat{y}=67.7-7.2 x$
3b. $\hat{y}=64-43.25 \log x$
3c. $\hat{y}=54.4 \cdot 0.592^{x}+20$
3d. $\hat{y}=46.33 x^{-0.68076}+20$
5a. $\hat{y}=-3.77 x^{3}+14.13 x^{2}+8.23 x-0.01$
5b. 0.079
5c. $12.52 \mathrm{~m}^{3}$
$5 d$. Because the root mean square is 0.079 , you can expect the predicted volume to be within approximately 0.079 cubic meter of the true value.
7a. 4.2125
7b. 43.16875
7c. 6.28525
7d. . 8544

7e. .90236; the cubic model is a better fit.
7f. $\hat{y}=-0.07925 x+8.175 ; R^{2} \approx .582$. The values of R^{2} and r^{2} are equal for the linear model.
9a. 86.2
9b. 79.8
9c. 89.4

11a. approximately 1910
11b. approximately 847
11c. approximately 919

CHAPTER 13 REVEW

1a. $0.5(20)(.1)=1$
1b. $20-5 \sqrt{6} \approx 7.75$
1c. .09
1d. $\frac{77}{300} \approx .257$

3a. $\bar{x}=10.55 \mathrm{lb} ; s=2.15 \mathrm{lb}$
3b. 6.25 lb to 14.85 lb
5a.

[$0,11,1,0,80,10$]
$5 \mathbf{b}$. yes; $r \approx 965$, indicating a relationship that is close to linear
5c. $\hat{y}=5.322 x+10.585$
5d. The rolling distance increases 5.322 in. for every additional inch of wheel diameter. The skateboard will skid approximately 10.585 in . even if it doesn't have any wheels.
5e. 7.5 in.
7. approximately . 062

9a. hyperbola

9b. ellipse

9c. parabola

9d. hyperbola

11a. $S_{12}=144 \quad$ 11b. $S_{20}=400 \quad$ 11c. $S_{n}=n^{2}$
13a. $y=-20 x^{2}+332 x$ 13b. \$8.30; $\$ 1377.80$
15. Row 1: .72, .08; Row 2: .18, .02; Out of 100 people with the symptoms, the test will accurately confirm that 72 do not have the disease while mistakenly suggesting 8 do have the disease. The test will accurately indicate 18 do have the disease and make a mistake by suggesting 2 do not have the disease who actually have the disease.

16a. possible answer: 3.8% per year
16b. possible answer: $\hat{y}=5.8(1+0.038)^{x-1970}$
16c. possible answer: 31.1 million
16d. The population predicted by the equation is much higher.
17a. seats versus cost: $r=.9493$; speed versus cost: $r=.8501$
17b. The number of seats is more strongly correlated to cost. Sample answer: The increase in number of seats will cause an increase in weight (both passengers and luggage) and thus cause an increase in the amount of fuel needed.
19a. $\frac{11 \pi}{36}$
19b. approximately 3.84
cm
19c. approximately $7.68 \mathrm{~cm}^{2}$
21a. (1, 4)
21b. (-5.5, 0.5)
23a. domain: $x \geq \frac{3}{2}$; range: $y \geq 0$
23b. domain: any real number; range: $y \geq 0$
23c. $f(2)=1$
23d. $x= \pm \sqrt{\frac{1}{3}}$ or $x \approx \pm 0.577$
23e. $g(f(3))=18$
23f. $f(g(x))=\sqrt{12 x^{2}-3}$
25a, b.

25c. approximately 7.9\%

Glossary

The number in parentheses at the end of each definition gives the page where each word or phrase is first used in the text. Some words and phrases are introduced more than once, either because they have different applications in different chapters or because they first appeared within features such as Project or Take Another Look; in these cases, there may be multiple page numbers listed.

A
ambiguous case A situation in which more than one possible solution exists. (472)
amplitude Half the difference of the maximum and minimum values of a periodic function. (584)
angular speed The amount of rotation, or angle traveled, per unit of time. (577)
antilog The inverse function of a logarithm. (279)
arithmetic mean See mean.
arithmetic sequence A sequence in which each term after the starting term is equal to the sum of the previous term and a common difference. (31)
arithmetic series A sum of terms of an arithmetic sequence. (631)
asymptote A line that a graph approaches, but does not reach, as x - or y-values increase in the positive or negative direction. (516)
augmented matrix A matrix that represents a system of equations. The entries include a column for the coefficients of each variable and a final column for the constant terms. (318)

B

base The base of an exponential expression, b^{X}, is b. The base of a logarithmic expression, $\log _{b} x$, is b. (245)
bearing An angle measured clockwise from north. (439)
bin A column in a histogram that represents a certain interval of possible data values. (94)
binomial A polynomial with two terms. (360)

Binomial Theorem For any binomial $(p+q)$
and any positive integer n, the binomial expansion
is $(p+q)^{n}={ }_{n} C_{n} p^{n} q^{0}+{ }_{n} C_{(n-1)} p^{n-1} q^{1}+$ ${ }_{n} C_{(n-2)} p^{n-2} q^{2}+\cdots+{ }_{n} C_{0} p^{0} q^{n}$. (712)
bisection method A method of finding an x-intercept of a function by calculating successive midpoints of segments with endpoints above and below the zero. (417)
bivariate sampling The process of collecting data on two variables per case. (763)
Boolean algebra A system of logic that combines algebraic expressions with "and" (multiplication), "or" (addition), and "not" (negative) and produces results that are "true" (1) or "false" (0). (232)
box plot A one-variable data display that shows the five-number summary of a data set. (79)
box-and-whisker plot See box plot.

c

center (of a circle) See circle.
center (of an ellipse) The point midway between the foci of an ellipse. (501)
center (of a hyperbola) The point midway between the vertices of a hyperbola. (514)
Central Limit Theorem If several samples containing n data values are taken from a population, then the means of the samples form a distribution that is approximately normal, the population mean is approximately the mean of the distribution of sample means, and the standard deviation of the sample means is approximately the population's standard deviation divided by the square root of n. Each approximation is better for larger values of n. (753)
circle A locus of points in a plane that are located a constant distance, called the radius, from a fixed point, called the center. $(447,497,498)$
coefficient of determination ($\boldsymbol{R}^{\mathbf{2}}$) A measure of how well a given curve fits a set of nonlinear data. (786) combination An arrangement of choices in which the order is unimportant. $(704,705)$
common base property of equality For all real values of a, m, and n, if $a^{n}=a^{m}$, then $n=m$. (246)
common difference The constant difference between consecutive terms in an arithmetic sequence. (31)
common logarithm A logarithm with base 10, written logx, which is shorthand for $\log _{10} x$. (274)
common ratio The constant ratio between consecutive terms in a geometric sequence. (33)
complements Two events that are mutually exclusive and make up all possible outcomes. (682)
completing the square A method of converting a quadratic equation from general form to vertex form. $(380,527)$
complex conjugate A number whose product with a complex number produces a nonzero real number. The complex conjugate of $a+b i$ is $a-b i$. (391)
complex number A number with a real part and an imaginary part. A complex number can be written in the form $a+b i$, where a and b are real numbers and i is the imaginary unit, $\sqrt{-1}$. $(391,392)$
complex plane A coordinate plane used for graphing complex numbers, where the horizontal axis is the real axis and the vertical axis is the imaginary axis. (394)
composition of functions The process of using the output of one function as the input of another function. The composition of f and g is written $f(g(x))$. (225)
compound event A sequence of simple events. (669)
compound interest Interest charged or received based on the sum of the original principal and accrued interest. (40)
conditional probability The probability of a particular dependent event, given the outcome of the event on which it depends. (672)
confidence interval A $p \%$ confidence interval is an interval about \bar{x} in which you can be $p \%$ confident that the population mean, φ, lies. (748)
conic section Any curve that can be formed by the intersection of a plane and an infinite double cone. Circles, ellipses, parabolas, and hyperbolas are conic sections. (496)
conjugate pair A pair of complex numbers whose product is a nonzero real number. The complex numbers $a+b i$ and $a-b i$ form a conjugate pair. (391)
consistent (system) A system of equations that has at least one solution. (317)
constraint A limitation in a linear programming problem, represented by an inequality. (337)
continuous random variable A quantitative variable that can take on any value in an interval of real numbers. (724)
convergent series A series in which the terms of the sequence approach a long-run value, and the partial sums of the series approach a long-run value as the number of terms increases. (637)
correlation A linear relationship between two variables. (763)
correlation coefficient (r) A value between -1 and 1 that measures the strength and direction of a linear relationship between two variables. (763)
cosecant The reciprocal of the sine ratio. If A is an acute angle in a right triangle, then the cosecant of angle A is the ratio of the length of the hypotenuse to the length of the opposite leg, or $\csc A=\frac{h y p}{o p p}$. See trigonometric function. (609)
cosine If A is an acute angle in a right triangle, then the cosine of angle A is the ratio of the length of the adjacent leg to the length of the hypotenuse, or $\cos A=\frac{a d j}{h y p}$. See trigonometric function. (440)
cotangent The reciprocal of the tangent ratio. If A is an acute angle in a right triangle, then the cotangent of angle A is the ratio of the length of the adjacent leg to the length of the opposite leg, or $\cot A=\frac{a d j}{o p p}$. See
trigonometric function. (609)
coterminal Describes angles in standard position that share the same terminal side. (569)
counting principle When there are n_{1} ways to make a first choice, n_{2} ways to make a second choice, n_{3} ways to make a third choice, and so on, the product $n_{1} \cdot n_{2} \cdot n_{3} \cdot$. . . represents the total number of different ways in which the entire sequence of choices can be made. (695)
cubic function A polynomial function of degree 3. (399)
curve straightening A technique used to determine whether a relationship is logarithmic, exponential, power, or none of these. See
linearizing. (287)
cycloid The path traced by a fixed point on a circle as the circle rolls along a straight line. (628)

D

degree In a one-variable polynomial, the power of the term that has the greatest exponent. In a multivariable polynomial, the greatest sum of the powers in a single term. (360)
dependent (events) Events are dependent when the probability of occurrence of one event depends on the occurrence of the other. (672)
dependent (system) A system with infinitely many solutions. (317)
dependent variable A variable whose values depend on the values of another variable. (123)
determinant The difference of the products of the entries along the diagonals of a square matrix. For any 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the determinant is $a d-$ bc. (357)
deviation For a one-variable data set, the difference between a data value and some standard value, usually the mean. (87)
dilation A transformation that stretches or shrinks a function or graph both horizontally and vertically by the same scale factor. (309)
dimensions (of a matrix) The number of rows and columns in a matrix. A matrix with m rows and n columns has dimensions $m \times n$. (302)

directrix See parabola.

discontinuity A jump, break, or hole in the graph of a function. (185)
discrete graph A graph made of distinct, nonconnected points. (52)
discrete random variable A random variable that can take on only distinct (not continuous) values. (688)
distance formula The distance, d, between points (x_{1}, y_{1})
and $\left(x_{2}, y_{2}\right)$, is given by the formula
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \cdot(489)$
domain The set of input values for a
relation. (123)
double root A value r is a double root of an equation $f(x)=0$ if $(x-r)^{2}$ is a factor of $f(x)$. (409)
doubling time The time needed for an amount of a substance to double. (240)

E

\boldsymbol{e} A transcendental number related to continuous growth, with a value of approximately 2.718. (293)
eccentricity A measure of how elongated an ellipse is. (502)
elimination A method for solving a system of equations that involves adding or subtracting multiples of the equations to eliminate a variable. (158)
ellipse A shape produced by stretching or shrinking a circle horizontally or vertically. The shape can be described as a locus of points in a plane for which the sum of the distances to two fixed points, called the foci, is constant. (217, 499, 500)
ellipsoid A three-dimensional shape formed by rotating an ellipse about one of its axes. (503)
end behavior The behavior of a function $y=f(x)$
for x-values that are large in absolute value. (405)
entry Each number in a matrix. The entry identified as $a_{i j}$ is in row i and column j. (302)
even function A function that has the y-axis as a line of symmetry. For all values of x in the domain of an even function, $f(-x)=f(x)$. $(235,612)$
event A specified set of outcomes. (659)
expanded form The form of a repeated multiplication expression in which every occurrence of each factor is shown. For example, $4^{3} \cdot 5^{2}=4 \cdot 4 \cdot 4 \cdot 5 \cdot 5$. (245)
expansion An expression that is rewritten as a single polynomial. (711)
expected value An average value found by multiplying the value of each possible outcome by its probability, then summing all the products. $(688,689)$
experimental probability A probability calculated based on trials and observations, given by the ratio of the number of occurrences of an event to the total number of trials. (659)
explanatory variable In statistics, the variable used to predict (or explain) the value of the response variable. (765)
explicit formula A formula that gives a direct relationship between two discrete quantities. A formula for a sequence that defines the nth term in relation to n, rather than the previous
term (s). (114)
exponent The exponent of an exponential
expression, b^{X}, is x. The exponent tells how many times the base, b, is a factor. (245)
exponential function A function with a variable in the exponent, typically used to model growth or decay. The general form of an exponential function is $y=a b^{X}$, where the coefficient, a, is the y-intercept and the base, b, is the ratio. $(239,240)$
extraneous solution An invalid solution to an equation. Extraneous solutions are sometimes found when both sides of an equation are raised to a power. (206)
extrapolation Estimating a value that is outside the range of all other values given in a data set. (131)
extreme values Maximums and minimums. (405)

Factor Theorem If $P(r)=0$, then r is a zero and $(x-r)$ is a factor of the polynomial function $y=$ $P(x)$. This theorem is used to confirm that a number is a zero of a function. (413)
factored form The form
$y=a\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$ of a polynomial function, where $a \neq 0$. The values $r_{1}, r_{2}, \ldots, r_{n}$ are the zeros of the function, and a is the vertical scale factor. (370)
factorial For any integer n greater than 1, n factorial, written $n!$, is the product of all the consecutive integers from n decreasing to 1 . (697)
fair Describes a coin that is equally likely to land heads or tails. Can also apply to dice and other objects. (657)
family of functions A group of functions with the same parent function. (194)
feasible region The set of points that is the solution to a system of inequalities. (337)

Fibonacci sequence The sequence of numbers $1,1,2,3,5,8, \ldots$, each of which is the sum of the two previous terms. $(37,59)$
finite A limited quantity. (630)
finite differences method A method of finding the degree of a polynomial that will model a set of data, by analyzing differences between data values corresponding to equally spaced values of the independent variable. (361)
first quartile $\left(\mathbf{Q}_{\mathbf{1}}\right)$ The median of the values less than the median of a data set. (79)
five-number summary The minimum, first quartile, median, third quartile, and maximum of a one-variable data set. (79)
focus (plural foci) A fixed point or points used to define a conic section. See ellipse, hyperbola, and parabola.
fractal The geometric result of infinitely many applications of a recursive procedure or calculation. $(32,397)$
frequency (of a data set) The number of times a value appears in a data set, or the number of values that fall in a particular interval. (94)
frequency (of a sinusoid) The number of cycles of a periodic function that can be completed in one unit of time. (602)
function A relation for which every value of the independent variable has at most one value of the dependent variable. (178)
function notation A notation that emphasizes the dependent relationship between the variables used in a function. The notation $y=f(x)$ indicates that values of the dependent variable, y, are explicitly defined in terms of the independent variable, x, by the function f. (178)
general form (of a polynomial) The form of a polynomial in which the terms are ordered such that the degrees of the terms decrease from left to right. (360)
general form (of a quadratic function) The form $y=a x^{2}+b x+c$, where $a \neq 0$. (368)
general quadratic equation An equation in the form $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, where A, B, and C do not all equal zero. (525)
general term The nth term, u_{n}, of a sequence.
(29)
geometric probability A probability that is found by calculating a ratio of geometric characteristics, such as lengths or areas. (661)
geometric random variable A random variable that represents the number of trials needed to get the first success in a series of independent trials. (688)
geometric sequence A sequence in which each term is equal to the product of the previous term and a common ratio. (33)
geometric series A sum of terms of a geometric sequence. (637)
golden ratio The ratio of two numbers (larger to smaller) whose ratio to each other equals the ratio of their sum to the larger number. Or, the positive number whose square equals the sum of itself and 1. The number $\frac{1+\sqrt{5}}{2}$, or approximately 1.618 , often represented with the lowercase Greek letter phi, $\phi .(60,389)$
golden rectangle A rectangle in which the ratio of the length to the width is the golden ratio. (60, 389)
greatest integer function The function $f(x)=[x]$ that returns the largest integer that is less than or equal to a real number, $x .(155,185)$

H

half-life The time needed for an amount of a substance to decrease by one-half. (238)
histogram A one-variable data display that uses bins to show the distribution of values in a data set. (94)
hole A missing point in the graph of a relation. (544)
hyperbola A locus of points in a plane for which the difference of the distances to two fixed points, called the foci, is constant. $(514,518)$
hyperboloid A three-dimensional shape formed by rotating a hyperbola about the line through its foci or about the perpendicular bisector of the segment connecting the foci. (496)
hypothesis testing The process of creating a hypothesis about one or more population parameters, and either rejecting the hypothesis or letting it stand, based on probabilities. (755)

identity An equation that is true for all values of the variables for which the expressions are defined. (609)
identity matrix The square matrix, symbolized by $[I]$, that does not alter the entries of a square matrix $[A]$ under multiplication. Matrix [I] must have the same dimensions as matrix [A], and it has entries of 1 's along the main diagonal (from top left to bottom right) and 0's in all other entries. $(327,328)$
image A graph of a function or point(s) that is the result of a transformation of an original function or point(s). (188)

imaginary axis See complex plane.

imaginary number A number that is the square root of a negative number. An imaginary number can be written in the form $b i$, where b is a real number $(b \neq 0)$ and i is the imaginary unit, $\sqrt{-1}$. (391)
imaginary unit The imaginary unit, i, is defined by $i^{2}=-1$ or $i=\sqrt{-1}$. (391)
inconsistent (system) A system of equations that has no solution. (317)
independent (events) Events are independent when the occurrence of one has no influence on the occurrence of the other. (671)
independent (system) A system of equations that has exactly one solution. (317)
independent variable A variable whose values are not based on the values of another variable. (123)
inequality A statement that one quantity is less than, less than or equal to, greater than, greater than or equal to, or not equal to another quantity. (336)
inference The use of results from a sample to draw conclusions about a population. (755)
infinite A quantity that is unending, or without bound. (637)
infinite geometric series A sum of infinitely many terms of a geometric sequence. (637)
inflection point A point where a curve changes between curving downward and curving upward. (739)
intercept form The form $y=a+b x$ of a linear equation, where a is the y-intercept and b is the slope. (121)
interpolation Estimating a value that is within the range of all other values given in a data set. (131)
interquartile range (IQR) A measure of spread for a one-variable data set that is the difference between the third quartile and the first quartile. (82)
inverse The relationship that reverses the independent and dependent variables of a relation. (268)
inverse matrix The matrix, symbolized by $[A]^{-1}$, that produces an identity matrix when multiplied by [A]. $(327,328)$
inverse variation A relation in which the product of the independent and dependent variables is constant. An inverse variation relationship can be written in the form $x y=k$, or $y=\frac{k}{x}$. (537)

Law of Cosines For any triangle with angles A, B, and C, and sides of lengths a, b, and c (a is opposite $\angle A, b$ is opposite $\angle B$, and c is opposite $\angle C$), these equalities are true: $a^{2}=b^{2}+c^{2}-2 b c \cos A, b^{2}=a^{2}+c^{2}-2 a c \cos B$, and $c^{2}=a^{2}+b^{2}-2 a b \cos C$. (477)

Law of Sines For any triangle with angles A, B, and C, and sides of lengths a, b, and c (a is opposite $\angle A, b$ is opposite $\angle B$, and c is opposite $\angle C$), these equalities are true: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$. (470)
least squares line A line of fit for which the sum of the squares of the residuals is as small as possible. (772)
limit A long-run value that a sequence or function approaches. The quantity associated with the point of stability in dynamic systems. (47)
line of fit A line used to model a set of two-variable data. (128)
line of symmetry A line that divides a figure or graph into mirror-image halves. (194)
linear In the shape of a line or represented by a line, or an algebraic expression or equation of degree 1. (52)
linear equation An equation characterized by a constant rate of change. The graph of a linear equation in two variables is a straight line. (114)
linear programming A method of modeling and solving a problem involving constraints that are represented by linear inequalities. (344)
linearizing A method of finding an equation to fit data by graphing points in the form $(\log x, y),(x, \log y)$, or $(\log x, \log y)$, and looking for a linear relationship. (781)
local maximum A value of a function or graph that is greater than other nearby values. (405)
local minimum A value of a function or graph that is less than other nearby values. (405)
locus A set of points that fit a given condition. (490)
logarithm A value of a logarithmic function, abbreviated log. For $a>0$ and $b>0, \log _{b} a=x$ means that $a=b^{X}$. (274)
logarithm change-of-base property For $a>0$ and $b>$ $0, \log _{a} x$ can be rewritten as $\frac{\log _{b} x}{\log _{0} a} .(275,282)$
logarithmic function The logarithmic function $y=\log _{b} x$ is the inverse of $y=b^{x}$, where $b>0$ and $b \neq 1$. (274)
logistic function A function used to model a population that grows and eventually levels off at the maximum capacity supported by the environment. A logistic function has a variable growth rate that changes based on the size of the population. (67)
lurking variable A variable that is not included in an analysis but which could explain a relationship between the other variables being analyzed. (767)

M

major axis The longer dimension of an ellipse. Or the line segment with endpoints on the ellipse that has this dimension. (500)
matrix A rectangular array of numbers or expressions, enclosed in brackets. (300)
matrix addition The process of adding two or more matrices. To add matrices, you add corresponding entries. (313)
matrix multiplication The process of multiplying two matrices. The entry $c_{i j}$ in the matrix [C] that is the product of two matrices, $[A]$ and $[B]$, is the sum of the products of corresponding entries in row i of matrix $[A]$ and column j of matrix $[B]$. (313)
maximum The greatest value in a data set or the greatest value of a function or graph. (79, 373, 377)
mean ($\overline{\boldsymbol{x}}$ or ${ }^{\boldsymbol{c}}$) A measure of central tendency for a one-variable data set, found by dividing the sum of all values by the number of values. For a probability distribution, the mean is the sum of each value of x times its probability, and it represents the x-coordinate of the centroid or balance point of the region. $(78,727)$
measure of central tendency A single number used to summarize a one-variable data set, commonly the mean, median, or mode. (78)
median A measure of central tendency for a one-variable data set that is the middle value, or the mean of the two middle values, when the values are listed in order. For a probability distribution, the median is the number d such that the line $x=d$ divides the area into two parts of equal area. $(78,727)$
median-median line A line of fit found by dividing a data set into three groups, finding three points (M_{1}, M_{2}, and M_{3}) based on the median x-value and the median y-value for each group, and writing the equation that best fits these three points. $(135,137)$
minimum The least value in a data set or the least value of a function or graph. $(79,373,377)$
minor axis The shorter dimension of an ellipse. Or the line segment with endpoints on the ellipse that has this dimension. (500)
mode A measure of central tendency for a one-variable data set that is the value(s) that occur most often. For a probability distribution, the mode is the value(s) of x at which the graph reaches its maximum value. $(78,727)$
model A mathematical representation (sequence, expression, equation, or graph,) that closely fits a set of data. (52)
monomial A polynomial with one term. (360)
multiplicative identity The number 1 is the multiplicative identity because any number multiplied by 1 remains unchanged. (327)
multiplicative inverse Two numbers are multiplicative inverses, or reciprocals, if they multiply to 1. (327)
mutually exclusive (events) Two outcomes or events are mutually exclusive when they cannot both occur simultaneously. (679)

N

natural logarithm A logarithm with base e, written $\ln x$, which is shorthand for $\log _{e} x$. (293)
negative exponents For $a>0$, and all real values of n, the expression a^{-n} is equivalent to $\frac{1}{a^{n}}$ and $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n} \cdot(246.282)$.
nonrigid transformation A transformation that produces an image that is not congruent to the original figure.
Stretches, shrinks, and dilations are nonrigid transformations (unless the scale factor is 1 or -1). (211)
normal curve The graph of a normal distribution. (735)
normal distribution A symmetric bell-shaped distribution. The equation for a normal distribution with mean φ and standard deviation σ is
$\frac{1}{\sigma \sqrt{2 \pi}}(\sqrt{e})^{-((x-\mu) / \sigma)^{2}}$.
null hypothesis A statement that a given hypothesis is not true. (755)

0

oblique (triangle) A triangle that does not contain a right angle. (468)
odd function A function that is symmetric about the origin. For all values of x in the domain of an odd function, $f(-x)=-f(x) .(235,612)$
one-to-one function A function whose inverse is also a function. (268)
outcome A possible result of one trial of an experiment. (659)
outlier A value that stands apart from the bulk of the data. $(89,91)$

P

parabola A locus of points in a plane that are equidistant from a fixed point, called the focus, and a fixed line, called the directrix. $(194,508,510)$
paraboloid A three-dimensional shape formed by rotating a parabola about its line of symmetry. (507)
parameter (in parametric equations) See parametric equations.
parameter (statistical) A number, such as the mean or standard deviation, that describes an entire population. (724)
parametric equations A pair of equations used to separately describe the x-and y-coordinates of a point as functions of a third variable, called the parameter. (424)
parent function The most basic form of a function. A parent function can be transformed to create a family of functions. (194)
partial sum A sum of a finite number of terms of a series. (630)

Pascal's triangle A triangular arrangement of numbers containing the coefficients of binomial expansions. The first and last numbers in each row are 1's, and each other number is the sum of the two numbers above it. (710)
percentile rank The percentage of values in a data set that are below a given value. (97)
perfect square A number that is equal to the square of an integer, or a polynomial that is equal to the square of another polynomial. (378)
period The time it takes for one complete cycle of a cyclical motion to take place. Also, the minimum amount of change of the independent variable needed for a pattern in a periodic function to repeat. $(213,566)$
periodic function A function whose graph repeats at regular intervals. (566)
permutation An arrangement of choices in which the order is important. $(697,698)$
phase shift The horizontal translation of a periodic graph. (584)
point-ratio form The form $y=y_{1} \cdot b^{x-x_{1}}$ of an exponential function equation, where the curve passes through the point $\left(x_{1}, y_{1}\right)$ and has ratio b. (254)
point-slope form The form $y=y_{1}+b\left(x-x_{1}\right)$ of a linear equation, where (x_{1}, y_{1}) is a point on the line and b is the slope. (129)
polar coordinates A method of representing points in a plane with ordered pairs in the form (r, θ), where r is the distance of the point from the origin and θ is the angle of rotation of the point from the positive x-axis. (622)
polynomial A sum of terms containing a variable raised to different powers, often written in the form $a_{n} x^{n}+a_{n-}$ ${ }_{1} x^{n-1_{+}} \cdots+a_{1} x^{1}+a_{0}$, where x is a variable, the exponents are nonnegative integers, and the coefficients are real numbers. (360)
polynomial function A function in which a polynomial expression is set equal to a second variable, such as y or $f(x)$. (360)
population A complete set of people or things being studied. $(713,724)$
power function A function that has a variable as the base. The general form of a power function is $y=a x^{n}$, where a and n are constants. (247)
power of a power property For $a>0$, and all real values of m and $n,\left(a^{m}\right)^{n}$ is equivalent to $a^{m n}$. (246, 282)
power of a product property For $a>0, b>0$, and all real values of $m,(a b)^{m}$ is equivalent to $a^{m} b^{m}$. (246, 282)
power of a quotient property For $a>0, b>0$, and all real values of $n,\left(\frac{a}{b}\right)^{n}$ is equivalent to $\frac{a^{n}}{b^{n}} \cdot(246,282)$ power property of equality For all real values of a, b, and n, if $a=b$, then $a^{n}=b^{n}$. (246)
power property of logarithms For $a>0, x>0$, and n $>0, \log _{a} x^{n}$ can be rewritten $n \log _{a} x$. (282)
principal The initial monetary balance of a loan, debt, or account. (40)
principal value The one solution to an inverse trigonometric function that is within the range for which the function is defined. (597)
probability distribution A continuous curve that shows the values and the approximate frequencies of the values of a continuous random variable for an infinite set of measurements. (725)
product property of exponents For $a>0$ and $b>0$, and all real values of m and n, the product $a^{m} \cdot a^{n}$ is equivalent to a^{m+n}. $(246,282)$
product property of logarithms For $a>0$,
$x>0$, and $y>0, \log _{a} x y$ is equivalent to $\log _{a} x+\log _{a} y$.
(282)
projectile motion The motion of an object that rises or falls under the influence of gravity. (377)

Q

quadratic curves The graph of a two-variable equation of degree 2. Circles, parabolas, ellipses, and hyperbolas are quadratic curves. (525)
quadratic formula If a quadratic equation is written in the form $a x^{2}+b x+c=0$, the solutions of the equation are given by the quadratic formula,
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. (386)
quadratic function A polynomial function of degree 2. Quadratic functions are in the family with parent
function $y=x^{2} .(194,368)$
quotient property of exponents For $a>0$ and $b>0$, and all real values of m and n, the quotient $\frac{a^{m}}{a^{m}}$ is equivalent to $a^{m-n} .(246,282)$
quotient property of logarithms For $a>0, x>0$, and $y>$ 0 , the expression $\log _{a} \frac{x}{y}$ can be rewritten as
$\log _{a} x-\log _{a} y$. (282)

R

radian An angle measure in which one full rotation is 2π radians. One radian is the measure of an arc, or the measure of the central angle that intercepts that arc, such that the arc's length is the same as the circle's radius. (574)
radical A square root symbol. (205)
radius See circle.
raised to the power A term used to connect the base and the exponent in an exponential expression. For example, in the expression b^{x}, the base, b, is raised to the power x. (245) random number A number that is as likely to occur as any other number within a given set. (658)
random process A process in which no individual outcome is predictable. (656)
random sample A sample in which not only is each person (or thing) equally likely, but all groups of persons (or things) are also equally likely. $(78,756)$
random variable A variable that takes on numerical values governed by a chance experiment. (688)
range (of a data set) A measure of spread for a one-variable data set that is the difference between the maximum and the minimum. (79)
range (of a relation) The set of output values of a relation. (123)
rational Describes a number or an expression that can be expressed as a fraction or ratio. (252)
rational exponent An exponent that can be written as a
fraction. The expression $a^{m / n}$ can be rewritten as $(\sqrt[n]{a})^{m}$ or $\sqrt[n]{a^{m}}$, for $a>0 .(253,282)$
rational function A function that can be written as a quotient, $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial expressions and $q(x)$ is of degree 1 or higher. (537)

Rational Root Theorem If the polynomial equation $P(x)=0$ has rational roots, they are of the form $\frac{p}{q}$, where p is a factor of the constant term and q is a factor of the leading coefficient. (414)

real axis See complex plane.

recursion Applying a procedure repeatedly, starting with a number or geometric figure, to produce a sequence of numbers or figures. Each term or stage builds on the previous term or stage. (28)
recursive formula A starting value and a recursive rule for generating a sequence. (29)
recursive rule Defines the nth term of a sequence in relation to the previous term(s). (29)
reduced row-echelon form A matrix form in which each row is reduced to a 1 along the diagonal, and a solution, and the rest of the matrix entries are 0's. (318)
reference angle The acute angle between the terminal side of an angle in standard position and the x-axis. (567)
reference triangle A right triangle that is drawn connecting the terminal side of an angle in standard position to the x-axis. A reference triangle can be used to determine the trigonometric ratios of an angle. (567)
reflection A transformation that flips a graph across a line, creating a mirror image. $(202,220)$
regression analysis The process of finding a model with which to make predictions about one variable based on values of another variable. (772)
relation Any relationship between two variables. (178)
relative frequency histogram A histogram in which the height of each bin shows proportions (or relative frequencies) instead of frequencies. (725)
residual For a two-variable data set, the difference between the y-value of a data point and the y-value predicted by the equation of fit. (142)
response variable In statistics, the outcome (dependent) variable that is predicted by the explanatory variable. (765)
rigid transformation A transformation that produces an image that is congruent to the original figure.
Translations, reflections, and rotations are rigid transformations. (211)
root mean square error (s) A measure of spread for a two-variable data set, similar to standard deviation for a one-variable data set. It is calculated by the
formula $s=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{1}-\hat{y}\right)^{2}}{n-2}} \cdot(145)$
roots The solutions of an equation in the
form $f(x)=0$. (370)
row reduction method A method that transforms an augmented matrix into a solution matrix in reduced row-echelon form. (318)

s

sample A part of a population selected to represent the entire population. Sampling is the process of selecting and studying a sample from a population in order to make conjectures about the whole population. $(713,724)$
scalar A real number, as opposed to a matrix or vector. (308)
scalar multiplication The process of multiplying a matrix by a scalar. To multiply a scalar by a matrix, you multiply the scalar by each value in the matrix. (308)
scale factor A number that determines the amount by which a graph is stretched or shrunk, either horizontally or vertically. (211)
secant The reciprocal of the cosine ratio. If A is an acute angle in a right triangle, the secant of angle A is the ratio of the length of the hypotenuse to the length of the adjacent leg, or sec $A=\frac{h y p}{a d j}$. See
trigonometric function. (609)
sequence An ordered list of numbers. (29)
series A sum of terms of a sequence. (630)
shape (of a data set) Describes how the data are distributed relative to the position of a measure of central tendency. (80)
shifted geometric sequence A geometric sequence that includes an added term in the recursive rule. (47)
shrink A transformation that compresses a graph either horizontally or vertically. $(209,213,220)$
simple event An event consisting of just one outcome. A simple event can be represented by a single branch of a tree diagram. (669)
simple random sample See random sample.
simulation A procedure that uses a chance model to imitate a real situation. (659)
sine If A is an acute angle in a right triangle, then the sine of angle A is the ratio of the length of the opposite leg to the length of the hypotenuse, or $\sin A=\frac{o p p}{h y p}$. See trigonometric function. (440)
sine wave A graph of a sinusoidal function.
See sinusoid. (583)
$\sin u s o i d$ A function or graph for which $y=\sin x$ or $y=\cos x$ is the parent function. (583)
skewed (data) Data that are spread out more on one side of the center than on the other side. (80)
slope The steepness of a line or the rate of change of a linear relationship. If (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ are two points on a line, then the slope of the line is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $x_{2} \neq x_{1} .(115,121)$
spread The variability in numerical data. (85)
square root function The function that undoes quaring, giving only the positive square root (that is, the positive number that, when multiplied by itself, gives the input). The square root function is written $y=\sqrt{X}$. (201)
standard deviation (s) A measure of spread for a one-variable data set that uses squaring to eliminate the effect of the different signs of the individual deviations. It is the square root of the variance, or $s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$.
standard form (of a conic section) The form of an equation for a conic section that shows the transformations of the parent equation. (498, 499, 510, 518)
standard form (of a linear equation) The form $a x+b y=c$ of a linear equation. (191)
standard normal distribution A normal distribution with mean 0 and standard deviation 1. (736)
standard position An angle positioned with one side on the positive x-axis. (567)
standardizing the variable The process of converting data values (x-values) to their images (z-values) when a normal distribution is transformed into the standard normal distribution. (746)
statistic A numerical measure of a data set or sample. (77)
statistics A collection of numerical measures, or the mathematical study of data collection and analysis. (77)
stem-and-leaf-plot A one-variable data display in which the left digit(s) of the data values, called the stems, are listed in a column on the left side of the plot, while the remaining digits, called the leaves, are listed in order to the right of the corresponding stem. (104)
step function A function whose graph consists of a series of horizontal lines. (185)
stretch A transformation that expands a graph either horizontally or vertically. (209, 213, 220)
substitution A method of solving a system of equations that involves solving one of the equations for one variable and substituting the resulting expression into the other equation. (153)
symmetric (data) Data that are balanced, or nearly so, about the center. (80)
synthetic division An abbreviated form of dividing a polynomial by a linear factor. $(415,416)$
system of equations A set of two or more equations with the same variables that are solved or studied simultaneously. (151)

T

tangent If A is an acute angle in a right triangle, then the tangent of angle A is the ratio of the length of the opposite leg to the length of the adjacent leg, or $\tan A=\frac{o p p}{a d j}$. See trigonometric function. (440)
term (algebraic) An algebraic expression that represents only multiplication and division between variables and constants. (360)
term (of a sequence) Each number in a sequence. (29)
terminal side The side of an angle in standard position that is not on the positive i-axis. (567)
theoretical probability A probability calculated by analyzing a situation, rather than by performing an experiment, given by the ratio of the number of different ways an event can occur to the total number of equally likely outcomes possible. (659)
third quartile $\left(Q_{3}\right)$ The median of the values greater than the median of a data set. (79)
transcendental number An irrational number that, when represented as a decimal, has infinitely many digits with no pattern, such as π or e, and is not the solution of a polynomial equation with integer coefficients. (293)
transformation A change in the size or position of a figure or graph. $(194,220)$
transition diagram A diagram that shows how something changes from one time to the next. (300)
transition matrix A matrix whose entries are transition probabilities. (300)
translation A transformation that slides a figure or graph to a new position. $(186,188,220)$
tree diagram A diagram whose branches show the possible outcomes of an event, and sometimes probabilities. (668)
trigonometric function A periodic function that uses one of the trigonometric ratios to assign values to angles with any measure. (583)
trigonometric ratios The ratios of lengths of sides in a right triangle. The three primary trigonometric ratios are sine, cosine, and tangent. (439)
trigonometry The study of the relationships between the lengths of sides and the measures of angles in triangles. (439)
trinomial A polynomial with three terms. (360)

U

unit circle A circle with radius of one unit.
The equation of a unit circle with center $(0,0)$ is $x^{2}+y^{2}=1$. (217)
unit hyperbola The parent equation for a hyperbola, $x^{2}-y^{2}=1$ or $y^{2}-x^{2}=1$ (515)
variance (s^{2}) A measure of spread for a one-variable data set that uses squaring to eliminate the effect of the different signs of the individual deviations. It is the sum of the squares of the deviations divided by one less than the number of values, or $S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$.
vector A quantity with both magnitude and direction. (455)A
velocity A measure of speed and direction. Velocity can be either positive or negative. (426)

Venn diagram A diagram of overlapping circles that shows the relationships among members of different sets. (395)
vertex (of a conic section) The point or points where a conic section intersects the axis of symmetry that contains the focus or foci. $(194,514)$
vertex (of a feasible region) A corner of a feasible region in a linear programming problem. (337)
vertex form The form $y=a(x-h)^{2}+k$ of a quadratic function, where $a \neq 0$. The point (h, k) is the vertex of the parabola, and a is the vertical scale
factor. (368)

Z

zero exponent For all values of a except $0, a^{0}=1$. (246)
zero-product property If the product of two or more factors equals zero, then at least one of the factors must equal zero. A property used to find the zeros of a function without graphing. (369)
zeros (of a function) The values of the independent variable (x-values) that make the corresponding values of the function ($f(x)$-values) equal to zero. Real zeros correspond to x-intercepts of the graph of a function. See roots. (369)
z-value The number of standard deviations that a given x-value lies from the mean in a normal distribution. (746)
absolute-value function

Activities

Around We Go, 534-535
The Coin Toss Problem, 666-667
Continuous Growth, 293-294
Cornering the Market, 68-69
Different Ways to Analyze Data, 106-107
From Circles to the Ellipse, 523-524
A Geometric Series, 650
A Good Fit, 149-150
Is This Normal?, 743-744
Polling Voters, 760-762
A Repeat Performance, 677-678
Revolution, 208
Rose Curves, 623
Two Spirals, 59-61
Variations on a Circle, 448-449
addition
arithmetic sequences and, 33
of complex numbers, 393, 394
of matrices, 307, 313
of rational expressions, 551-552
row operations of matrices, 319
of trigonometric functions, 615-619
addition property of equality, 158
addition rule for mutually exclusive
events, 680-682
adjacency matrix, 305
Alcuin of York, 5
allometry, 264
ambiguous case, 472
amplitude, 584
angle(s)
central, 565, 578
in circular functions, 567-569
reference, 567
angle of incidence, 475
angle of refraction, 475
angle of rotation, 534-535
angular speed, 577
antilog, 279-280
Apollonius of Perga, 497
applications
agriculture and horticulture, 102, 119, 324, 349, 375
appreciation and depreciation, 38, 192, 239-240
archaeology and anthropology, 42, 155, 202, 277, 283, 285, 356, 573
architecture, 18, 28, 30, 44, 113, 125, 166, 217, 389, 421, 503, 505, 507, 509, 514, 536
art, 162, 186, 191, 260, 389, 396, 450, 494
astronomy, 183, 200, 258, 264, 473, 474, 504, 506, 522, 525, 571, 590, 592, 607, 609, 718
biology, human, 101, 146, 296, 297, 316, 366, 404, 458, 661, 701, 741-742
biology, nonhuman, 57, 70, 259, 264, 265, 290, 294, 297, 348, 411, 418, 431, 687, 712-713, 717, 741, 789
botany, 45, 264, 375
business, 21, 31-32, 36, 49, 57, 68-69, 92-93, 118, 126, 133, 142-143, 154, 155, 177, 184, 235, 285, 292, 305, 306, 322, 325, 342, 344-347, 348, 353, 374, 383, 418, 494, 641, 643, 720, 721, 731, 791
Celsius and Fahrenheit conversion, 271
census, 79, 97, 105, 743-744
chemistry, $57,65,83,215,258$, 539-540, 541, 614, 741, 757, 758
computers and Internet, 13, 16, 21, 115, 178, 191, 209, 216, 232, 417, 692, 699, 700, 786
construction and maintenance, 6 , $47-48,50,126,291,352,382$, 790
consumer awareness, 11, 20, 23, $63,66,73,93,104,114,120$, 155, 161, 199, 216, 231, 244, 272, 296, 305, 316, 332, 349, 352, 420, 542, 675, 699, 731, 741, 757, 771
cooking, 13, 512, 674
dance, 180, 325, 423
design and engineering, 12, 103, $125,163,194,390,445,481$, 521, 536, 556, 561, 600, 717
diet and nutrition, 24, 98-99, 173, 301, 309-310, 346-347, 350, 785
distance calculations, 24, 147, 153, 200, 205, 206, 215, 267-268, 291, 424-426, 437, 441-442, 453-455, 456-458, 467, 468-472, 473-474, 480-481, 485, 492-494, 494, 561, 572, 580-581, 582, 586-588, 635, 686
economics, 141, 324-325, 334
education, 89-90, 97, 103, 133, 168, 297, 336, 338, 733, 769, 777
employment, 19, 35, 37, 755, 778 entertainment, 57, 110-111, 169, 244, 256, 332, 607, 647, 648, 655, 662, 700
environment, 47, 67, 72, 129-130, 184, 225-226, 241, 287, 384, 424, 549, 630, 758, 768-769, 776
film, 27, 260
gambling, 656-657, 689-690, 706-707, 708
genealogy, 43
geometry, 183, 200, 333
government, 105, 148, 708, 730-731
income, 63, 116-117, 120, 125, 181, 292
insurance, 656
interest, 40-41, 43, 64, 65, 73, 167, 276, 293-294, 333, 613
investments, 42, 49, 63, 261, 649
language, 183, 188, 431
law enforcement, 103, 206, 491
life expectancy, 139-140, 740
loans, credit, and mortgages, 62-63, 65, 73, 74, 84, 177, 228, 654
manufacturing, 91, 111, 348, 349, 550, 675, 685, 693, 750-751
maps, 174
medicine and health, 45-46, 49-50, 57, 73, 77-78, 92, 167, 304, 458, 513, 661, 716, 754-755, 757, 791
metallurgy, 559
meteorology and climatology, 52, 57, 92, 109, 163, 636, 777
music, 33, 94, 179, 193, 256, 269, 278, 284, 342, 395, 466, 615-617, 621, 624, 634, 787
navigation, 439, 443, 453-455, 474, 481-482, 533
oceanography, 53, 565
pets, $20,348,382,464,721,785$
physics, 125, 126, 145, 161, 162, 165, 183, 203, 212-213, 231, 261-262, 263, 284, 291, 333, 341, 362, 367, 458, 475, 542, 591, 599, 606, 664-665, 685
polls and surveys, 335, 686, 713-715, 716, 760-762
population, human, 43, 44, 58, 67, 69, 73, 79, 89, 95-97, 134, 152, 167, 168, 241, 304, 353, 356, 754, 792
population, nonhuman, 69-70, 259, 342, 652
radioactivity, 238, 251, 265, 522
recycling, 173, 184
resource consumption and conservation, 23, 67, 123-124, 134, 163, 272, 348, 354, 512, 562, 630, 750
safety, 140, 758
seismology, 125, 275, 431, 480, 531
sound, 255, 290, 291, 306, 505, 514, 592-593, 615-617, 621
sports, $45,72,82,109,126,131$, $140,154,186,196,199,216$, 229, 258, 300, 302, 303, 304, 320-321, 381, 387, 434-435, 452-453, 462-463, 464, 465, 466, 485, 541, 562, 580, 675, 692, 709, 721, 748-749, 789, 790
technology, 277, 279, 280, 564
telecommunications, 223, 306, 355, 481, 492, 507, 521, 532-533, 606, 787
tides, 565, 601-602, 606, 613, 627
transportation, 23, 24, 103, 224, 277, 305, 341, 430, 438, 456-458, 505, 750, 757, 785, 792
velocity and speed calculations, 14-15, 44, 119, 121, 122-123, 229, 362, 495
arc(s), length of, 573-578 area
of a triangle, 475
formula for, 475
probability and, 660-662, 726-728, 737, 745-746
of sectors, 576-577
area model, 660
arithmetic mean, 111
arithmetic sequences, 31-32
as basic sequence, 33
common difference of, 31, 360
defined, 31
explicit formulas for, 114-117
graphs of, 52-53
slope and, 115
arithmetic series, 630-633
formula for partial sum of, 632-633
astronomy, 183, 200, 258, 264, 473,
474, 504, 506, 522, 525, 571, 590,
592, 607, 609, 718
asymptotes
defined, 516
of hyperbolas, 516, 518
of rational functions, 537-538, 545-546
slant, 546
augmented matrix, 318, 323

B

Babbage, Charles, 364
balancing approach, 728
bar graphs, histograms compared to, 94
base
of exponents, 245
of logarithms, 274, 275, 293
bearing, 439-443
beats, 621
Bell, Alexander Graham, 255
bell curve. See normal distribution
Bernoulli, Jacob, 293
binomial distribution, 711-715,
734-737
See also normal distribution
binomials, defined, 360
Binomial Theorem, 711-715
bins, 94
bisection method, 417
bivariate sampling, 763
Bohr, Niels, 665
Boolean algebra, 232
Boole, George, 232
box-and-whisker plots, 79-81, 89
box plots, 79-81, 89
Boyle, Robert, 258
Braille, Louis, 676

c

cardiods, 623-624
Cartesian graphs. See coordinate graphs
causation, 766-767, 771
ceiling function, 185
Celsius, Anders, 271
Celsius and Fahrenheit conversion, 271
center of circle, 447, 497
central angle, 565, 578
Central Limit Theorem, 752-756
central tendency, measures of, 77-81 defined, 78
for probability distributions, 726-728
See also mean; median; mode
centroid, 169, 728
Chu Shih-chieh, 630
circle(s)
arcs, length of, 573-578
arcs, measure of, 573-578
center of, 447, 497
central angle, 565, 578
as conic section, 496-497
defined, 447, 497
great, 581
parametric equations for, 447-451, 498
as quadratic curves, 525
radius of, 447, 497
sectors, area of, 576-577
semicircles, 219
standard form of equation, 498
transformations and, 217-219
unit. See unit circle
See also circular functions
circular functions
cosine, 565-569
cyclical patterns modeled by, 565
notation and terminology for,
565, 567, 569
as periodic, 566-567
sine, 565-568
See also sinusoids (sine waves)
coefficient matrix, 331
coefficient of determination, 786, 794
combinations and probability, 703-707
common base, 274
common base property of equality, 246
common difference, 31
common logarithm, 274
common ratio, defined, 33
complements, 682-684
complete graphs, 409
completing the square, 377-381, 526-527
complex numbers, 391-394
complex conjugates, 391
conjugate pairs. See conjugate pairs
defined, 392
graphing, 394
imaginary unit (i), 391
modeling using, 393
operations with, 394
complex plane, 394, 396, 397
composition of functions, 225-228
of inverse and its function, 268-269
product function distinguished from, 227
compound event, 669
compound interest, 40-41
conditional probability, 672
confidence intervals, 748-749, 760-762
conic sections, 496-497
construction of, 499, 523-524
as quadratic curves, 525
rotation of, 534-535
systems of, solving, 528-531
transformations of, 217-219, 509-510, 534-535
conjectures, testing
graphs, 107
summary statistics, 106
conjugate pairs
defined, 391-392
zeros as, 402, 407-408

Connections

architecture, 166
art, 162, 191, 450
astronomy, 525
business, 383
careers, 20, 32, 430, 494, 556, 656, 754
consumers, $38,63,99,316,349$, 542, 690, 699, 731, 751
economics, 40, 42, 73, 325, 334
engineering, 125, 194, 390
environment, 47, 67, 72, 130, 272, 384, 424, 512, 549, 630, 758, 769, 776
health, 78, 173
history, 4, 5, 7, 34, 69, 79, 119, 148, 271, 333, 364, 389, 391, 395, 474, 491, 495, 497, 523, 529, 533, 573, 581, 586, 609, 630, 632, 657, 676, 736, 739, 772
language, 183, 188, 343, 440
mathematics, $3,32,306,396,521$, 717
music, 193, 284, 616, 621
recreation, 126, 443, 580, 648
science, $16,53,83,103,129,155$, 161, 165, 174, 202, 203, 223, 238, 255, 258, 264, 284, 290, 294, 297, 341, 362, 367, 431, 445, 458, 474, 480, 505, 507, 514, 565, 571, 590, 593, 601, 665, 685, 701, 718, 742
social science, 105, 708
sports, 82, 485
technology, 178, 280, 355, 417, 481, 507, 513, 599, 606, 624, 692, 700, 786
See also applications; cultural connections
consistent systems of equations, 317
constraints, 337, 338, 339
continuous graphs, 173, 178
continuous random variables,724-725
convergent series, 637-640, 650-651
coordinate graphs
complex plane, 394
history of, 3
problem solving with, 3
correlation
causation distinguished from, 766-767, 771
defined, 763
correlation coefficient, 763-767, 772
cosecant (csc), 609
cosine (cos), 440
circular functions and, 565-569
combining of function, 615-619
identities of, 609-611, 617-619
inverse of, 596-697
reciprocal of (secant, sec), 609
sinusoids and, 584, 602
See also sinusoids; trigonometry
Cosines, Law of, 476-479
cotangent (cot), 609-610
counting principle, 695-696
cryptography, 343
cubic functions
defined, 399
factored form of, 399
graphs of, 405
cultural connections, $7,8,15,43,79$, 97, 284, 333, 343, 364, 369, 440, 450, 454, 497, 572, 573, 609, 630, 647, 657
curve straightening, 287
cyclic hyperbolas, 557
cycloids, 628

D

dampened sine function, 608 data
binary, 760
bivariate, 763
extrapolation, 131
finite differences method and, 362, 364
five-number summary of, 79
interpolation, 131
linearizing, 781-782
maximum values in, 79
measures of center of. See central
tendency,measures of
minimum values in, 79
outliers, 89, 149-150
percentile ranks, 97-98
range of, 79
shape of, 80, 780-781
skewed, 80
spreads of, 85-90, 112
summarizing, 78
symmetric, 80
See also graphs; samples;
statistics; variables
decay. See growth and decay
degree of polynomials
defined, 360
finite differences method of finding, 361-364
shape of graph and finding, 407
dependent events, 672
dependent systems of equations, 317
dependent variable, 123
of functions, 178, 181
of inverse functions, 266, 268
depreciation, 38, 192, 239-240
Descartes, René, 3
determinant of matrix, 357
determination, coefficient of, 786, 794
deviation, 87-88
defined, 86, 87
mean, 112
standard. See standard deviation
dilations, 309
dimensional analysis, 576-578
dimensions of matrix, 302, 312
directrix, 508
discontinuities, 185
discrete graphs, 52
of functions, 178
interpretation of, 173
of sequences, 52
discrete random variables, 688, 724-725
distance, formula for, 488-491
division
of complex numbers, 394
inequalities and, 336
of polynomials, 414-416
of rational expressions, 553-554
synthetic, 415-416
domain, 123, 567
double-angle identities, 619
double roots, 409
doubling time, 240
dynamic systems, 47

E

$e, 293,294,717,736$
eccentricity, 502
elimination
matrices and, 318-320
of negative roots, 204
in systems of equations, 158-160, 318-320
ellipse(s), 499-502
as conic section, 496-497
construction of, 499, 523-524
defined, 500
eccentricity of, 502
equation of, 499
foci of, 499-500
general quadratic equation and, 527
graphing, 500-502
Lamé curves (superellipses), 562
major axis, 500
minor axis, 500
parametric equation of, 499
as quadratic curves, 525
reflection property of, 505
transformations of circles and, 217-219, 499
end behavior, 405
entry (element) of matrix, 302
equality, properties of, 158
equations
exponential. See exponential curves; exponential equations
identities, trigonometric, 609-611, 617-619
linear. See linear equations
normal distribution, 735-736
parametric. See parametric equations
polar, 622-624
power, 261-262
quadratic. See quadratic equations
radian measure, 576
roots of. See roots of an equation
systems of. See systems of equations
unit circle, 217
See also equations, solving; functions
equations, solving
exponential equations, with logarithms, 274-276, 286-289
exponent properties and, 246-248, 261-262, 273
logarithmic properties and, 279-282
power equations, 261-262
quadratic. See quadratic equations, solving
systems of. See systems of equations, solving
undoing order of operations, 248
Euler, Leonhard, 391
even functions, 235
events
complements, 682-684
compound, 669
defined, 659
dependent, 672
independent, 671-672, 682
mutually exclusive, 679-684
simple, 669
expanded form of exponents, 245
expected value, 687-690
experimental probability, 659, 661
explanatory variables, 765
explicit formulas, 114

Explorations

Census Microdata, 105-107
Confidence Intervals for Binary Data, 760-762
Constructing the Conic Sections, 523-524
Geometric Probability, 666-667
The Law of Large Numbers, 677-678
Normally Distributed Data, 743-744
The Number e, 293-294
Parametric Equations for a Circle, 447-449
Polar Coordinates, 622-623
Recursion in Geometry, 59-61
Refining the Growth Model, 67-70

Residual Plots and Least Squares, 149-150
Rotation as a Composition of Transformations, 208
The Rotation Matrix, 534-535
Seeing the Sum of a Series, 650-651
exponential curve
point-ratio form of equation for, 253-255, 261-262
solving with systems of equations, 298
straightening the, 287
exponential equations
applications of, 261-262
solving, with logarithms, 273-276
exponential functions, 238-240
doubling time, 240
general form of, 240
graphing, 273
growth and decay modeled with,
238-240, 261, 287-288
solving, 239-240
exponents
base of, 245
expanded form, 245
notation for, 245
positive bases defined for properties of, 248
properties of, 245-248, 282
rational. See rational exponents
expressions
operations with rational, 551-555
See also equations; polynomials; terms
extrapolation, 131
extreme values, 405

F

factored form of equations, 398-402, 412-413
factored form of quadratic functions, 371
conversion to general form, 370
roots corresponding to factors, 419
vertex found with, 378
factored form of rational functions, 547
Factor Theorem, 413
Fahrenheit and Celsius conversion, 271
family of functions, 194
family trees, 43
Fathom Explorations
Census Microdata, 105-107
Confidence Intervals for Binary Data, 760-762
The Law of Large Numbers, 677-678

Normally Distributed Data, 743-744
Residual Plots and Least Squares, 149-150
Fathom Project, Correlation vs.
Causation, 771
feasible region, 337, 339, 344-347
Fibonacci, Leonardo, 12, 37, 59
Fibonacci sequence, 37, 389
Fibonacci spiral, 59-60
finite, 630
finite differences method, 361-364
first quartile, 79
five-number summary, 79
floor function, 185
foci
of ellipses, 499-500
of hyperbolas, 514-515, 517, 518, 520
formulas
explicit, 114
recursive, 29-31
Foucault, Jean Bernard Leon, 183
Foucault pendulum, 183
fractals
complex plane and, 396, 397
Koch snowflake, 642
Mandelbrot set, 396, 397
Sierpiŕski triangle, 32-33, 642
frequency
defined, 602
sounds, 615-617, 621
Friedman, Irving, 202
functional response curve, 549
functions
ceiling, 185
circular. See circular functions
composition of. See composition of functions
defined, 178
even, 235
exponential. See exponential functions
family of, 194
floor, 185
greatest integer, 155, 185
inverse. See inverse functions
linear. See linear functions
logarithms. See logarithmic functions
logistic, 67
notation for, 178-181
odd, 235
parent, 194
periodic, 566
polynomial, defined, 360
power. See power functions
probability distribution. See
probability distribution
projectile motion, 377
quadratic. See quadratic functions
rational. See rational functions reflections of. See reflections square root. See square root functions
step, 185
stretching and shrinking of. See stretches and shrinks
translation of, 186-189
vertical line test to determine, 178
zeros of. See zeros of a function
See also equations

G

Galileo Galilei, 203, 212, 362, 586
Galton, Francis, 742, 772
Ganita Sara Samgraha (Mahaāvīra), 333
Gauss, Carl Friedrich, 632-633, 736
general addition rule, 682
general form, defined, 360
general form of quadratic equations.
See quadratic equations
general form of quadratic functions,
368, 371
converting to vertex form, 377-380
factored form converting to, 370
general quadratic equation, 525-531
general term, 29
The Geometer's Sketchpad

Explorations

Constructing the Conic Sections, 523-524
The Law of Large Numbers, 677-688
Recursion in Geometry, 59-61
Rotation as a Composition of Transformations, 208
Seeing the Sum of a Series, 650-651
The Geometer's Sketchpad Project, Viewing Angle, 459
geometric probability, 661, 666-667
geometric random variables, 688
geometric sequences, 32-33
as basic sequence, 33
common ratio of, 33
defined, 33
graphs of, 52-54
shifted, 47-48
geometric series
convergent infinite, 637-640, 650-651
partial sums of, 644-646
geometry
applications, 183, 200, 333
diagonals of a polygon, 361-362
language of, 183
mean of probability distribution and, 728
recursion and, 59-61

See also Improving Your

Geometry Skills

geosynchronous orbits, 223
Germany, 465
golden ratio, 60, 389
golden rectangle, 60, 389
golden rectangle spiral, 60-61 graphing
of absolute-value functions, 209
of arithmetic sequences, 115
of circles, 447-449
of complex numbers, 394
of composition of functions, 226, 236
of compositions of functions, 225-226
curve straightening, 287-288
of ellipses, 500-502
of exponential functions, 273
of general quadratric equation in two variables, 525
of hyperbolas, 516-517, 519
of inverse trigonometric functions, 595-597
of least squares line, 150
of line of fit, 128
of logistic functions, 67
nonlinear regression and, 780-783
of normal distributions, 735, 737-739
of parabolas, 194-197
of parametric equations, 424-427, 432-435
of partial sum of a sequence, 639
of polar equations, 622-624
of polynomial functions, 399-402, 412-413
of probability distributions, 725-726
of quadratic functions, 369
of rational functions, 537-538, 544-547
recursion and, 29
of residual plots, 149-150
of sequences, 51-54
of square root functions, 201-202
of step functions, 185
of systems of conic sections, 529-531
of systems of equations, 151-152
of systems of inequalities, 336-339
of transformations. See transformations
of trigonometric functions. See sinusoids (sine waves)
graphs
analyzing, 54
box plot, 79-81, 89
cardiods, 623-624
complete, 409
continuous, 173, 178
discontinuities, 185
discrete. See discrete graphs
estimation of real solutions with, 531
histograms. See histograms
holes, 544
interpretation of, 172-175
linear, 52
problem solving with, 3
stem-and-leaf plots, 104
transformations of. See transformations
vertical line test of, 178
web, 236
graph theory, 306
great circle, 581
greatest integer function, 155, 185
growth and decay
curve-straightening to determine, 287-288
doubling time, 240
exponential functions modeling, 238-240, 261, 287-288
half-life, 238
logistic functions and, 67
recursion modeling, 38-41, 52-54, 67-70
guess-and-check, 22

H

half-angle identities, 619
half-life, 238
al-Haytham, Ab $\overline{\mathbf{u}}$ Ali Al-Hasan ibn, 529
Hipparchus of Rhodes, 573
histograms, 94-100
bar graphs compared to, 94
relative frequency, 725
Hoffenberg, Marvin, 334
holes, 544
Hollings, C. S., 549
How to Solve It (Pólya), 4
hyperbola(s), 514-519
asymptotes of, 516, 518
as conic section, 496-497
construction of, 524
cyclic, 557
definition of, 514
equation of, 516, 518
foci of, 514-515, 517, 518, 520
general quadratic equation and, 526
graphing of, 516-517, 519
as quadratic curves, 525
unit, 515
vertices of, 514, 515
hyperboloid, 521
hypothesis testing, 755-756

i, 391

identities, trigonometric, 609-611, 617-619
identity, defined, 609
identity matrix, 327-328
imaginary axis, 394
imaginary unit (i), 391
Improving Your Geometry Skills
Dissecting a Square, 84
Lines in Motion Revisited, 207
A New Area Formula, 475
Improving Your Reasoning Skills
Beating the Odds, 667
Breakfast Is Served, 251
Cartoon Watching Causes Small Feet, 156
A Change of Plans, 709
Coding and Decoding, 343
Cryptic Clue, 265
The Dipper, 200
Elliptical Pool, 506
The Fake Coin, 678
Fibonacci and the Rabbits, 37
Internet Access, 21
Planning for the Future, 649
Secret Survey, 335
Sequential Slopes, 120
A Set of Weights, 779
Improving Your Visual Thinking Skills
Acorns, 759
4-in-1, 224
Intersection of Planes, 326
Miniature Golf, 216
A Perfect Arrangement, 702
Slicing a Cone, 522
Sums and Differences, 376
Think Pink, 50
Toothpicks, 643
inconsistent systems of equations, 317
independent events, 671-672, 682
independent systems of equations, 317
independent variable, 123
of functions, 178
of inverse functions, 266, 268
India, 284, 333, 440, 647, 662
inequalities, 336
See also systems of inequalities
inference, 755
infinite series, 637, 640
inflection points, 739
inside dimensions, 312
intercept form
defined, 121
and point-slope, graphical relation of, 186-189
interest, 40-41, 43, 64, 65, 73, 167,
276, 293-294, 333, 613
interpolation, 131
interquartile range (IQR), 82
inverse functions, 266-269
one-to-one function, 268
principal value, 597
trigonometric, 442, 594-597
inverse matrix, 327, 328-331, 357
inverse relations, 268, 595-597
inverse variation, 537
See also rational functions
Investigation into the Laws of
Thought, An (Boole), 232

Investigations

Addition Rule, 681
Airline Schedules, 143-144
Areas and Distributions, 745-746
Arithmetic Series Formula, 632
Around the Corner, 478
Balloon Blastoff, 122-123
Basketball Free Throw, 463
The Bell, 734-735
A Bouncing Spring, 603
The Box Factory, 400
The Breaking Point, 536-537
Bucket Race, 488-489
Camel Crossing the Desert, 3
Chilly Choices, 301
A Circle of Radians, 573-574
Complete the Square, 379-380
Complex Arithmetic, 393-394
Cooling, 289
"Dieing" for a Four, 687-688
Doses of Medicine, 45-46
Eating on the Run, 98-99
Exploring the Inverses, 595-596
Exponents and Logarithms, 273-274
Find Your Place, 310-311
Flip a Coin, 657-658
Fold a Parabola, 511
Free Fall, 363
Geometric Series Formula, 645
Getting to the Root, 252
A Good Design, 85-86
Graph a Story, 174
How High Can You Go?, 387
Infinite Geometric Series

$$
\text { Formula, } 638
$$

The Inverse, 266-267
The Inverse Matrix, 328-329
It All Adds Up, 159
The Largest Triangle, 406
League Play, 320-321
A Leaky Bottle Experiment, 783-784
Life's Big Expenditures, 62
Looking for Connections, 764
Looking for the Rebound, 39
Looking Up, 226-227
Make My Graph, 195
Match Point, 116

Match Them Up, 51-52
Maximizing Profit, 344-345
Means of Samples, 752-753
Monitoring Inventory, 31-32
Motion in a Current, 452-453
Movin'Around, 186-187
The Multiplication Rule, 669-670
Oblique Triangles, 468-469
Order and Arrange, 694-695
Paddle Wheel, 566
Parametric Walk, 432-433
Pascal's Triangle and Combination
Numbers, 710-711
Passing By, 518
Paying for College, 336-337
Pencil Lengths, 725
The Pendulum, 212-213
The Pendulum II, 585
Population Trends, 152
Predicting Asymptotes and

Holes, 545

Problems, Problems, Problems, 10
Properties of Exponents, 245
Pulse Rates, 80
Pythagorean Identities, 610-611
Radioactive Decay, 238
Relating Variables, 773-774
Rolling Along, 371-372
Simulating Motion, 426
A Slice of Light, 502
Slide Rule, 280-281
Sound Wave, 616-617
Spring Experiment, 138
Systems of Conic Equations, 529
Take a Moment to Reflect, 201-202
To Be or Not to Be (a Function),
180-181

Two Ships, 441-442
The Wave, 131
When Is a Circle Not a Circle?, 219
Who Owns the Zebra?, 17
Winning the Lottery, 706-707
$I Q R$ (interquartile range), 82

K

al-Kashi, Jamshid Masud, 364
Kepler, Johannes, 258, 718
al-Khwārizmī, Muhammad ibn
M $\overline{1}$ s̄̄, 7, 440
Kit $\overline{\mathbf{a}} b$ al-jabr wa'al-muq $\overline{\mathbf{a}} b a l a h$
(al-Khwārizmī), 7, 440
Koch snowflake, 642

Lamé curves, 562
Law of Cosines, 476-479
Law of Large Numbers, 677-678
Law of Sines, 470-472
least common denominator, 551
least squares line, 149-150, 772-775
Leonardo da Vinci, 119
Leontief, Wassily, 334
Liber Abaci (Book of Calculations)
(Fibonacci), 12, 37, 59
limits, 45-48
defined, 47
See also logistic functions
line(s)
as functions, 186
parallel, 169, 189
of reflection, 202, 235
See also line of fit
linear correlation. See correlation coefficient
linear equations
arithmetic sequences and,114-117
formula, 114
intercept form, 121, 186-189
point-slope form. See point-slope form
systems of. See systems of equations
in three variables, 321
linear functions, 186
intercept form, 186
point-slope form, 186
translation of, 186-189
linear graphs, 52
linearizing data, 781-782
linear programming, 344-347
line of fit
choosing procedure for, 775
coefficient of determination, 786, 794
correlation coefficient and, 763-767, 772
defined, 128
estimation of, 128-131
least squares line, 149-150, 772-775
median-median line, 135-138, 149-150, 169, 774-775
nonlinear regression and, 780-784
point-slope form and, 129-131
residual plots and, 149-150
residuals and, 142-144
root mean square error, 144-146, 775
line of reflection, 202, 235
line of symmetry, 194, 235
Li Shun-Fêng, 364
local maximum, 405
local minimum, 405
locus, 490
logarithmic functions, 273-276
change-of-base property, 275
common base, 274
common logarithm, 274
definition of, 274
exponents and, 273-274
natural, 293
positive numbers required for, 286
properties of, 275, 279-282
solving exponential equations
with, 274-276, 286-289
logistic functions, 67
long-run value, 47
lurking variable, 767

m

Mahāvīra, 333
major axis, 500
Malthus, Thomas, 69
Mandelbrot, Benoit, 396, 397
Mandelbrot set, 396, 397
matrices
addition of, 307, 313
adjacency, 305
augmented, 318, 323
coefficient, 331
cryptography and, 343
defined, 300
determinant of, 357
dimension of, 302, 312
entry (element) of, 302
identity, 327-328
inverse, 327, 328-331, 357
multiplication of, 309-313
reduced row-echelon form, 318, 323
representation of information with, 302
rotation, 534-535
row operations in, 319
row reduction method, 318-323
scalar multiplication, 308, 313
systems of equations solved with,
318-323, 329-331
transformations of, 307-309
transition, 300-303
maximum
of data sets, 79
local, 405
of quadratic function, 377
maximum capacity, 67-70
mean
Central Limit Theorem and, 752-756
defined, 78
and normal distributions, 737-739
notation for, 78, 735
for probability distributions, 727-728
types of, 111
z-values and confidence intervals and, 745-749
See also standard deviation
mean deviation, 112
measures of central tendency. See central tendency, measures of median
box plots and, 79
defined, 78
for probability distributions, 727-728
median-median line, 135-138,

$$
149-150,169,774-775
$$

Menaechmus, 497
metric system, establishment of, 5
Mini-Investigations, 58, 64, 191-192,
222, 241, 242, 243, 249, 256, 257,
282-283, 315, 317, 556, 571, 579,
598, 620-621, 770, 786
minimum
of data sets, 79
local, 405
of quadratic function, 377
minor axis, 500
mode, 78, 727
model, defined, 52
monomials, defined, 360
multiplication
of complex numbers, 393-394
geometric sequences and, 33
inequalities and, 336
of matrices, 309-313
of rational expressions, 553-554
row operations of matrices, 319
scalar, of matrices, 308, 313
multiplication property of equality, 158
multiplication rule for independent events, 671-672
multiplicative identity, 327
multiplicative inverse, 327

N

Napier, John, 279
Napier's bones, 279
natural logarithm function, 293
negative exponents, 246
negative numbers, square root of. See
complex numbers
Newton, Isaac, 203
Nightingale, Florence, 739
nonlinear regression, 780-784
coefficient of determination and, 786, 794
nonrigid transformations, 211
normal curve, 735
normal distributions, 734-739,
743-744
approximate equation for, 795
binomial distribution and,

734-735

Central Limit Theorem and, 752-756
confidence intervals, 747-749
data types of, 743-744
defined, 735
equation for, 737
general equation for, 735
graphs of, 735, 737-739
inflection points, 739
notation for, 735, 738
standard, 736-738
standardizing the variable,
746-747
transformations and, 735, 737
z-values, 745-749
null hypothesis, 755-756
numbers
chart summarizing types of, 392
complex. See complex numbers
rounding of, 443, 479
systems of, 97
transcendental, 293

0

oblique triangles, 468
O’Connell-Rodwell, Caitlin, 431
odd functions, 235
one-to-one functions, 268
Optics (al-Haytham), 529
order of operations, undoing, to
solve equations, 248, 261
orders of magnitude, 260
Oughtred, William, 280
outcomes, 659
outliers, 89, 149-150
outside dimensions, 312

P

parabola(s), 507-511
as conic section, 496-497
construction of, 524
defined, 508
directrix of, 508
equation of, 510
focus of, 507, 508-509
general quadratic equation and,

$$
527-528
$$

graphing of, 194-197
line of symmetry of, 194
as quadratic curves, 525
transformations of, 509-510
vertex of, 194
See also quadratic equations
paraboloid, 507
parallel lines
finding, 169
translations mapping, 189
parameter in parametric equations, 424
parameters of a population, 724
parametric equations
of circles, 447-451, 498
conversion to nonparametric equations, 432-435
defined, 424
of ellipses, 499
graphing, 424-427, 432-435
of hyperbolas, 518
of projectile motion, 460-463
trigonometry and, 439-442, 447-451
parent functions, 194
partial sums
of arithmetic series, 630-633
of geometric series, 644-646

Pascal's triangle, 710-711
Pasteur, Louis, 290
patterns, 28
problem solving with, 22
See also recursion
Pearson, Karl, 764
percentile rank, 97-98
perfect square, 378-379
period, 566, 602
periodic functions, 566
permutations, 694-698
Péter, Rózsa, 34
phase shift, 584
planar equation, 781
point(s)
inflection, 739
locus of, 490
point-ratio form, 253-254
applications using, 261-262
point-slope form
defined, 129
and intercept form, graphical relation of, 186-189
line of fit using, 129-130
translation direction and, 188
polar coordinates, 622-624
Pólya, George, 4
polynomials
binomials, 360
defined, 360
degree of. See degree of polynomials
division of, 414-416
end behavior, 405
factored form of, 398-402, 412-413
as functions, defined, 360
general form of, defined, 360
higher-degree, 405
local minimums and maximums
(extreme values), 405
monomials, 360
nonlinear regression and, 781, 782-783, 784, 794
trinomials, 360
zeros, finding, 412-416
See also quadratic functions
population
defined, 724
notation for, 735
parameters of, 724
polls sampling, 713
See also samples
population probability, 714-715
power equations, solving, 261-262
power functions
general form of, 247
nonlinear regression with, 782
rational function as, 253
solving, 247-248
power of a power property of exponents, 246, 253
power of a product property of exponents, 246
power of a quotient property of exponents, 246
power property of equality, 246
power property of logarithms, 282
principal, 40
principal value, 597
probability
addition rule for, 680-684
area model, 660
arrangements without replacement, 696-697
binomial expansion and,
711-715
combinations and, 703-707
conditional probability, 672
counting principle, 695-696
diagrams, 713, 725
events. See events
expected value, 687-690
experimental probability, 659, 661
generalization of, 677-678
geometric probability, 661,
666-667
origins of, 656
outcomes, 659
Pascal's triangle and, 710-711
of a path, 671-672, 679
permutations and, 694-698
population probability, 714-715
Punnett squares, 701
random processes and, 656-658
simulations, 659
theoretical probability, 659-661
tree diagrams and, 668-672, 679
trinomial expansion and, 722
Venn diagrams and, 679-684
See also statistics
probability distributions
area and, 726-728
defined, 725
graphs of, 725-726
measures of center for, 726-727
normal distributions. See normal distributions

Problems for the Quickening of the
Mind (Alcuin of York), 5
problem solving
acting out the problem, 2
coordinate graphs and, 3
diagrams and, 2-3
group effort and, 2-3
organizing information, 14-17
strategies for, 4,22
symbolic representation, 7-10
product property of exponents, 246
product property of logarithms, 282
projectile motion
function of, 377
parametric equations and, 460-463

Projects

All About $e, 294$
Boolean Graphs, 232
Calculator Program for the Quadratic Formula, 390
Catapult, 482
Correlation vs. Causation, 771
The Cost of Living, 244
Counting Forever, 141
Create Your Own Computer Icon, 13
Cyclic Hyperbolas, 557
A Dampened Sine Curve, 608
Design a Picnic Table, 600
Going Downhill Fast, 550
Income by Gender, 292
Making It Fit, 787
The Mandelbrot Set, 397
Nutritional Elements, 350
Powers of 10, 260
The Pyramid Investment Plan, 66
Simpson's Paradox, 733
Stem-and-Leaf Plots, 104
Step Functions, 185
Talkin'Trash, 134
Viewing Angle, 459
See also Fathom Project; The Geometer's Sketchpad Project
properties
addition property of equality, 158
common base property of equality, 246
commutative, 227
of exponents, 246, 282
logarithm change-of-base property, 275
of logarithms, 282
multiplication property of equality, 158
multiplicative identity, 327
multiplicative inverse, 327
negative exponents defined, 246
power of a power property of exponents, 246, 253
power of a product property of exponents, 246
power of a quotient property of exponents, 246
power property of equality, 246
product property of exponents, 246
quotient property of exponents, 246
reflection property of an ellipse, 505
substitution, 158
zero exponents, 246
zero-product, 369-370
Punnett squares, 701
puzzles. See Improving Your
Geometry Skills; Improving
Your Reasoning Skills;
Improving Your Visual
Thinking Skills
Pythagorean identities, 610-611
Pythagorean Theorem, 217, 489
See also trigonometry

a

quadratic curves, 525
See also conic sections
quadratic equations
general equation in two variables, 525-531
general form, quadratic formula and, 386-388
standard form, conversion to, 526-528
quadratic equations, solving
completing the square, 377-381, 526-527
graphing, 369
quadratic formula, 386-388
quadratic formula, 386-388, 528
quadratic functions
factored form. See factored form of quadratic functions
form of, choosing, 371, 372
general form of. See general form of quadratic functions
translations of, 193-197, 211, 368
vertex form of. See vertex form of quadratic functions
zeros of. See zeros of a function
quartiles, 79
Quételet, Adolphe, 69
quipus, 97
quotient property of exponents, 246
quotient property of logarithms, 282

R

radian measure, 573-578
radical, 205
radioactivity, 238, 251, 265, 522
radius, 447, 497
random numbers, 658
random processes, 656-658
random sample. See samples
random variables, 688, 724-725
range, 79, 123
rational exponents, 252-255
defined, 253
point-ratio form of equation, 253-254, 261-262
as power function, 253
as roots, 252
transformations and, 253
rational expressions, operations with, 551-555
rational functions, 536-540
asymptotes of, 537-538, 545-546
defined, 537
factored form of, 547
graphing of, 537-538, 544-547
holes of, 544, 545
as power function, 253
transformations of, 253, 537-539
Rational Root Theorem, 414
Rayleigh, Lord (John William
Strutt), 83
real axis, 394
reciprocal identities, 609-611
recursion, 71
defined, 28, 34
formula for, 29-31
geometry and, 59-61
growth and decay modeled with, 38-41, 52-54, 67-70
loans and investments, 62-63
partial sum of a series, 631, 644
rule for, 29
sequences. See sequences
recursive definition, 28-29
recursive formula, 29-31

Recursive Functions in Computer

Theory (Péter), 34
recursive rule, 29
recycling, 173, 184
reduced row-echelon form, 318, 323
reference angle, 567
reference triangle, 567
reflection property of an ellipse, 505
reflections
defined, 202
line of, 202, 235
as rigid transformation, 211
of square root family, 201-204, 211
summary of, 220
Refraction, Snell's Law of, 475
regression
linear, 772-775, 781-782
nonlinear, 780-784
relation
defined, 178
inverse of, 268, 595-597
relative frequency histogram, 725
replacement, arrangements without, 696-697
residuals
defined, 140, 142
line of fit and, 142-144, 774-775
nonlinear regression and, 780-784
plots, 149-150
sum of, 142, 144
response variables, 765
Richter, Charles F., 275
Richter scale, 275
right triangle. See Pythagorean
Theorem; trigonometry
rigid transformations, 211
Robert of Chester, 440
root mean square error, 144-146, 775
roots of an equation

defined, 370

degree of polynomials and number of, 419
double, 409
factored form of polynomials and, 401
quadratic formula to find, 385-388
See also zeros of a function
rotation matrix, 534-535
rotations, 208, 534-535
rounding
accuracy reduced by, 479
of trigonometric ratios, 443
row reduction method, 318-323

S

samples
bias in, 78
Central Limit Theorem and, 752-756
correlation coefficient and, 763-767, 772
defined, 724
notation for, 735
polling and, 713
random, 78
simple random sample, 756
z-values and confidence intervals
for, 745-749

See also data; probability; statistics
scalar multiplication, 308, 313
scalars, 308
scale factor, 211
Schooten, Frans van, 523
Schrödinger, Erwin, 665
secant (sec), 609
sectors, area of, 576-577
semicircles, 219
sequences, 71
arithmetic. See arithmetic sequences
defined, 29
Fibonacci, 37, 389
geometric. See geometric sequences
graphs of, 51-54, 115, 639
limits and, 45-48
shifted, 47-48
summation of terms in. See series
See also terms
series
arithmetic, 630-633
convergent, 637
defined, 630
finite number of terms, 630
geometric. See geometric series
infinite, 637
partial sum of, 630-633
See also sequences
shape of data, 80, 780-781
shifted sequences, 47-48
Sierpiŕski triangle, 32-33, 642
Sierpiŕski, Waclaw, 32
simple event, 669
simple random sample, 756
simulations, 659
sine (sin), 440
circular functions and, 565-568
combining of function, 615-619
identities of, 609-611, 617-619
inverse of, 594-596, 597
reciprocal of (cosecant, csc), 609
See also sinusoids; trigonometry
Sines, Law of, 470-472
sinusoids (sine waves)
amplitude of, 584
cosine and, 584, 602
dampened, 608
frequency, 602
modeling with, 601-605
period of, 584
phase shift of, 584
transformations of, 583-587
Sive de Organica Conicarum
Sectionum in Plano Decriptione,
Tractatus (Schooten), 523
skewed data, 80
slant asymptotes, 546
slide rule, 280-282, 298
slope, 121-124
arithmetic sequences and, 115
of asymptotes of a hyperbola, 518
choice of points to determine,

$$
\text { 122-123, } 129
$$

formula for, 121
See also point-slope form
Smith, Robert L., 202
Snell's Law of Refraction, 475
speed
angular, 577
applications, 14-15, 44, 119, 121, 122-123, 229, 362, 495
sphere(s), great arc, 581
spirals
Fibonacci, 59-60
golden rectangle, 60-61
polar equation for, 624
spread, measures of, 85-90, 112
square root functions
graphing of, 201-202
negative root elimination in, 204
standard deviation, 88-90
on calculator, 86
Central Limit Theorem and, 752-755
confidence intervals, 748-749
formula for, 88
inflection points and, 739
normal distribution and, 735, 737-739
notation for, 88, 735
z-values, 745-749
standardizing the variable, 746-747, 772
standard normal distribution, 736-738
standard position of angle, 567
statistics
Central Limit Theorem, 752-756
central tendency. See central tendency, measures of
coefficient of determination, 786, 794
confidence intervals, 748-749, 760-762
correlation coefficient, 763-767, 772
defined, 77
deviation. See deviation; standard deviation
hypothesis testing, 755-756
least squares line, 149-150, 772-775
nonlinear regression, 780-784
outliers, 89, 149-150
parameters, 724
predictions with. See probability
quartiles, 79
samples. See samples
spread, measures of, 85-90, 112
z-values, 745-749, 764
See also data; normal

> distributions; probability distributions
stem-and-leaf plots, 104
step functions, 185
stretches and shrinks, 213
absolute-value function, 209-213
circles and, 217-219
dilation, 309
as nonrigid transformation, 211
of rational functions, 538-539
scale factor and, 211
summary of, 220
substitution
composition of functions and, 226
in systems of equations, 153, 157-158
subtraction, of rational expressions, 552-553
sum
of data values, 78
partial sum of series, 630-633
of the residuals, 142,144
sum and difference identities, 619
superellipses, 562
Symbolic Logic (Venn), 395
symmetric data, 80
symmetry, line of, 194, 235
synthetic division, 415-416
systems of equations, 151
consistent, 317
dependent, 317
inconsistent, 317
independent, 317
number of solutions of, 317, 323
systems of equations, solving
conic sections, 528-531
elimination and, 158-160, 318-320
exponential curves, 298
graphing, 151-152
greatest integer function, 155, 185
with inverse matrices, 327-331
with matrices, 318-323
nonlinear, 170
number of equations required for, 331
substitution and, 153, 157-158
systems of inequalities
constraints in, 337, 338, 339
feasible region in, 337, 339, 344-347
graphing solutions for, 336-339
linear programming and, 344-347
nonlinear programming and, 357
operations with, 336

T

Take Another Look
central tendency, measures of, 111
complex numbers, 422
composition of functions, 236
conic sections, 562-563
curves, 421
degree of polynomials, 421
exponential curves, 298
matrices, 357
median-median lines, 169
normal distributions, 795
odd and even functions, 235
parametric equations, 486, 628
probability, 722
problem solving, 25-26
rational functions, 297, 562
recursion, 74
regression analysis, 794-795
series, 653-654
slide rule, 298
solving nonlinear systems of
equations, 170
spread, measures of, 112
transformations, 235-236
trigonometry, 486, 627-628
tangent, 440
circle trigonometry and, 587-588
identities with, 609-611, 619
reciprocal of (cotangent, cot), 609-610
See also trigonometry
technology
applications, 277, 279, 280, 564
connections, 178, 280, 355, 417, 481, 507, 513, 599, 606, 624, 692, 700, 786
exercises, 13, 36, 120, 200, 243, 446, 494, 532, 543, 607, 718, 729, 732
terminal side, 567
terms
general, 29
graphs of, 52
of polynomials, 360
of recursive sequence, 29-30, 38
starting, choice of, 38
See also series
theorems
Binomial, 712
Central Limit, 753
Factor, 413
Pythagorean, 217
Rational Root, 414
theoretical probability, 659-661
See also probability
third quartile, 79
time
as independent variable, 123
as parametric variable, 483
transcendental numbers, 293
transformations
of circles, 217-219
defined, 194
dilations, 309
matrices and, 307-309
nonrigid, 211
of normal distributions, 735, 737
of rational functions, 253, 537-539
reflections. See reflections
rigid, 211
rotations, 208, 534-535
scale factor and, 211
stretches and shrinks. See
stretches and shrinks
summary of, 220
translations. See translations
of trigonometric functions, 583-588
transition diagrams, 300-303
transition matrices, 300-303
translations
image, 188
of linear functions, 186-189
of parametric equations, 427
of quadratic functions, 193-197, 211, 368
of rational functions, 539
as rigid transformation, 211
summary of, 220
of trigonometric functions, 583-585, 588
Treatise on Conic Sections
(Apollonius of Perga), 497
tree diagrams, 668-672, 679
triangle(s)
area of, 475
Law of Sines, 470
oblique, 468
obtuse, 469
reference, 567
right. See Pythagorean Theorem; trigonometry
trigonometric functions
combining, 615-619
cyclical motion and, 565-569
graphs of. See sinusoids (sine waves)
identities, 609-611, 617-619
inverses of, 442, 594-597
transformations of, 583-588
trigonometric ratios, 439-443
trigonometry
coterminal angles, 569
cyclical motion and, 565-567
defined, 439
Law of Cosines, 476-479
Law of Sines, 470-472
parametric equations and, 439-442, 447-451
projectile motion and, 460-463
ratios of, 439-443
reference angle, 567
rounding of values, 443
setting a course with, 452-455
standard position of angle, 567
terminal side of angle, 567
trinomial expansion, 722
trinomials, defined, 360
Tukey, John, 104

U

unit circle
defined, 217
equation of, 217
reference angle on, 567
standard position of angle in, 567
terminal side of angle in, 567
transformation of, 217-218
unit hyperbola, 515
units of measure
dimensional analysis, 576-578
history of, 5
of standard deviation, 88

V

variability. See spread
variables
continuous random, 724-725
correlation of, 763-767, 772
dependent. See dependent variable
discrete random, 688, 724-725
explanatory, 765
independent. See independent
variable
lurking, 767
random, 688, 724-725
response, 765
standardizing values of, 746-747
variance, 88
vectors, 455
velocity, defined, 426
velocity and speed applications,
$14-15,44,119,121,122-123,229$,
362, 495
Venn diagrams, 395, 679-684
Venn, John, 395
Verhulst, Pierre François, 69
vertex
of a parabola, 194
of inequalities, 337
transformations and, 211
vertex form of quadratic functions completing the square to find, 377-381
equation, 368, 371
factored form and, 370-371, 378
formulas for h and k to find, 381
quadratic formula and, 385-386
vertical asymptotes, 537-538, 545-546
vertical line test, 178
vertices of a hyperbola, 514, 515
volume
of a cube, 398
cubic polynomials and, 405
Voronoi diagram, 494

W

web graphs, 236

X

x-intercepts, finding
bisection method, 417
factored form, 399
graphing, 385
zero-product, 370
y-intercepts, of linear equation, 115

z

zero exponents, 246
zero-product property, 369-370
zeros of a function
complex conjugates, 402, 407-408
defined, 369
factored form of polynomial and, 399-402
Factor Theorem to confirm, 413
of higher-degree polynomials, 412-416
quadratic formula to find, 385-388
Rational Root Theorem to find, 414-415
zero-product property to find, 369-370
See also roots of an equation z-values, 745-749, 764

Photo Credits

Abbreviations: top (t), middle (\boldsymbol{m}), bottom (b), left (l), right (r) Cover

Background and center image: NASA; all other images: Ken Karp Photography
Front Matter
$\mathbf{v}(\boldsymbol{t})$: Ken Karp Photography; vi (t): Ken Karp Photography;
vi (b): Ken Karp Photography; vii(b): Ken Karp Photography;
ix (t): Ken Karp Photography; $\mathbf{x}(\boldsymbol{t})$: Ken Karp Photography;
xi (t): Ken Karp Photography; xii: Ken Karp Photography;

Chapter 0

1: Photograph by David Heald © The Solomon R. Guggenheim Foundation, New York; 3: Michael Nicholson/Corbis; 4: AP-Wide World Photos; 6: Christie's Images; 7 (t): Getty Images; 7 (bm): Bodleian Library, Oxford, U.K. Copyright (MS Hunt. 214 Title Page); 11: Christie’s Images; 12: Cheryl Fenton; 15: Scala/Art Resource, NY; 16 (t): Ken Karp Photography; 16 (b): U.S. Genomics; 18: Daniel Castor; 19: Corbis; 20 (b): © The New Yorker Cartoon Collection 2001 Jack Ziegler from cartoonbank.com. All Rights Reserved; 20 (l): AFP/Corbis; 20 (r): Reuters New Media/Corbis; 21: Cheryl Fenton; 24: NASA

Chapter 1

27: Residual Light by Anthony Discenza. Photos courtesy of the artist; $\mathbf{2 8}$ (\mathbf{l}): Sandro Vannini/Corbis; $\mathbf{2 8}$ (r): Tom \& Dee Ann McCarthy/Corbis; 30: Owaki-Kulla/Corbis; 33: Archive Photos/PictureQuest; 35: Gary D. Landsman/Corbis; 36: Ken Karp Photography; 37: The Image Bank/Getty Images; 38: Bohemia Nomad Picturemakers/Corbis; 39: Ken Karp Photography; 39: RF; 41: Tom Collicott/Masterfile; 42: Richard T. Nowitz/Science Source/Photo Researchers, Inc.; 43: Bettmann/Corbis; 44: Bob Krist/Corbis; 45 (l): Duomo/Corbis; $\mathbf{4 5}$ (r): Tom \& Pat Leeson/DRK Photo; 46: Ken Karp Photography; 47: The Cleveland Memory Project; 48: Tony Freeman/PhotoEdit/PictureQuest; 49: RF; 50: Cheryl Fenton; 52 (t): Cheryl Fenton; 52 (b): NOAA; 53: Ken Smith/Scripps/DRK Photo; 57 (t): Getty Images; 57 (b): Paul Skelcher/Rainbow; 58: Archivo Iconografico, S. A./Corbis; 59: Lester Lefkowitz/Corbis; 63: John Henley/Corbis; 64: Stuart Westmorland/ Index Stock Imagery/PictureQuest; 65: Ken Edward/Photo Researchers, Inc.; 67: Lester Lefkowitz/Corbis; 70: M. Harvey/DRK Photo; 72: Galen Rowell/Corbis; 73: Martha Bates/Stock Boston Inc./PictureQuest
Chapter 2
76: © 2003 Monika Sprüth Gallery/Artists Rights Society (ARS), New York/VG Bild-Kunst, Bonn; Courtesy of Monika Sprüth/ Philomene Magers, Cologne/Munich/Art Resource, NY; 77: Laima Druskis/Stock, Boston Inc./PictureQuest; 80: Ken Karp Photography; 81: Ken Karp Photography; 82: Getty Images; 83: Corbis; 85 (t): AP-Wide World Photos; 85 (b): Ken Karp Photography; 86: Ken Karp Photography; 87: Photos courtesy of Lorraine Serena/Women Beyond Borders; 89: NASA; 91: Bohemian Nomad Picturemakers/ Corbis; 96: Lester Lefkowitz/Corbis; 97 (I):Gianni Dagli Orti/ Corbis; 97 (r): Werner Forman Archive/Museum fur Volkerkunde, Berlin/Art Resource,NY; 98: Chase Swift/Corbis; 101: Ken Karp Photography; 102: RF; 103: Phillip James Corwin/Corbis; 105: Bettmann/Corbis; 109 (t): Reuters NewMedia Inc./Corbis; 109 (b): NASA/NOAA; 110: Getty Images

Chapter 3

113: Zaha Hadid Architects; 114: Pablo Corral/Corbis; 115: RF; 118: Alan Schein Photography/Corbis; 119: Dan Ackroyd \& Heather Harvey; 121: Gale Beery/Index Stock/PictureQuest; 122: Ken Karp Photography; 125: Deborah Davis/PhotoEdit/PictureQuest; 126: Andre Jenny/Focus Group/PictureQuest; 129: David

Muench/Corbis; 130: NASA; 131: Chuck Savage/Corbis; 133: Ken Karp Photography; 134: Chuck Fishman/Contact Press Images/ PictureQuest; 137: Tourists on the Moon \#2 by Yoshio Itagaki, 1998/Courtesy of the artist and Cristinerose Gallery, New York; 140: Tim Wright/Corbis; 141: Michael A. Dwyer/Stock Boston Inc./PictureQuest; 143: Courtesy of the artist and The Project, NY; 145: RF; 147: Cheryl Fenton; 148: Reuters NewMedia Inc./Corbis; 151: Green Mass, I. Pereira, Gift of Leslie Bokor and Leslie Dame, Photograph © 2002 Board of Trustees,National Gallery of Art, Washington, 1950, oil on canvas; 155 (t):AP-Wide World Photos; 155 (bl): E. R. Degginger/Bruce Coleman Inc.; 155 (br): E. R. Degginger/Bruce Coleman Inc.; 157: Courtesy of the National Museum of the American Indian, Smithsonian Institution. Photo by R.A.Whiteside; $\mathbf{1 6 1 (t) : K e n ~ K a r p ~ P h o t o g r a p h y ; ~} \mathbf{1 6 1 (b) : ~ E . ~ R . ~}$ Degginger/Bruce Coleman Inc.; 162 (mr): Burstein Collection/ Corbis; 162 (mr): Dominique Berretty/Black Star Publishing/ PictureQuest; 166: Jose Fuste Raga/Corbis

Chapter 4

171: Courtesy of the artist and Artemis Greenberg Van Doren Gallery, New York; 172: Lorna Simpson, Wigs (portfolio), 1994, waterless lithograph on felt, 72 " $\times 162$ " overall installed/Collection Walker Art Center, Minneapolis/T. B. Walker Acquisition Fund, 1995; 173: DiMaggio/Kalish/Corbis; 174: PEANUTS reprinted by permission of United Feature Syndicate, Inc.; 175: Ellsworth Kelly, Blue Green Curve, 1972, Oil on canvas, $87-3 / 4 \times 144-1 / 4$ in. The Museum of Contemporary Art, Los Angeles, The Barry Lowen Collection; 177: Douglas Kirkland/Corbis; 179: Archivo Iconografico, S. A./ Corbis; 180: Getty Images; 182: David Bentley/Corbis; 183: Robert Holmes/Corbis; 184: Chris Chen/2c Management; 186 (l): SIMPARCH, Free Basin, birch wood,metal supports, courtesy of SIMPARCH, installation view at the Wexner Center for the Arts, photo by Dick Loesch; 186 (r): SIMPARCH, Free Basin, birch wood, metal supports, courtesy of SIMPARCH, installation view at the Wexner Center for the Arts, photo by Roman Sapecki; 187: Ken Karp Photography; 188 (m): Cheryl Fenton; 188 (b): Danny Lehman/Corbis; 190: Cheryl Fenton; 191: © 2002 Eun-Ha Paek, stills from L'Faux Episode 7 on MilkyElephant.com; 193 (I): AP-Wide World Photos; 193 (r): ©Minnesota Historical Society/Corbis; 194 (I): Bessie's Blues by Faith Ringgold © 1997, acrylic on canvas, 76" $\times 79$ ", photo courtesy of the artist; 194 (r): Phil Schermeister/Corbis; 196: Getty Images; 197: Bo Zaunders/Corbis; 199: Robert Ginn/Index Stock Imagery/PictureQuest; 200: © 1998 Jerry Lodriguss; 201: Ken Karp Photography; 202: James L. Amos/ Corbis; 203: James A. Sugar/Corbis; 206: Tony Freeman/PhotoEdit/ PictureQuest; 209: Ken Karp Photography; 211: Robert Lazzarini payphone, 2002, mixed media, 108×84.48 in. ($274.3 \times 213.4 \times$ 121.9 cm) as installed in 2002 Biennial Exhibition, Whitney Museum of Art, New York (March 7-May 26, 2002); 212: Archivo Iconografico, S.A. /Corbis; 216: Bettmann/Corbis; 217: Tom Nebbia/Corbis; 219: Lester Lefkowitz/Corbis; 225: AFP/Corbis; 227: Ken Karp Photography; 235: Sense oil on birch panel © 2002 Laura Domela, photo courtesy of the artist

Chapter 5

237: Tree Mountain-A Living Time Capsule-11,000 Trees, 11,000 People, 400 Years 1992-1996, Ylojarvi, Finland, (420 meters long \times 270 meters wide $\times 28$ meters high) © Agnes Denes. Photo courtesy of Agnes Denes; 238: Roger Ressmeyer/Corbis; 241: Buddy Mays/ Corbis; 243: Clementine Gallery/Courtesy Heidi Steiger Collection; 244: Bettmann/Corbis; 249: Eric Kamischke; 252: Paul Almasy/ Corbis; 254: Franz-Marc Frei/Corbis; 255: Reuters NewMedia Inc./ Corbis; 256: Neal Preston/Corbis; 258 (t): JPL/NASA; 258 (b): Geoff Tompkinson/Photo Researchers, Inc.; 259: Ruet Stephane/Corbis

Sygma; 260: © 2002 Eames Office (www.eamesoffice.com); 263: Ken Karp Photography; 264: NASA; 269: Alice Arnold/Retna Ltd.;
271: Getty Images; 273: Cheryl Fenton; 274: Dr. Oyvind Hammer;
275: Getty Images; 277 (t): Tom Bean/Corbis; 277 (b): Corbis; 278: Getty Images; 279: Bettmann/Corbis; 280: Cheryl Fenton; 284: Reuters NewMedia Inc./Corbis; 285: Getty Images; 286: Cheryl Fenton; 287: Tom Stewart/Corbis; 289: Ken Karp Photography; 290: Bettmann/Corbis; 291: Stock Portfolio-Stock
Connection/PictureQuest; 292: Brownie Harris/Corbis; 294 (m): Holt Confer/Grant Heilman Photography; 294 (mr): Grant Heilman Photography; 297: H.Turvey/Photo Researchers, Inc.

Chapter 6

299: Fragile by Amy Stacey Curtis. Photos of Fragile © 2000 by Amy Stacey Curtis/www.amystaceycurtis.com; 300: David Stoecklein/Corbis; 301: Ken Karp Photography; 303: Karl Weatherly/Corbis; 304: Corbis; 310: Ken Karp Photography; 311: Copyright Robert Silvers 2001 Photomosaics ${ }^{\text {TM }}$. Photomosaics ${ }^{\text {TM }}$ is the trademark of Runaway Technology, Inc.www.photomosaic.com U.S. Patent No. 6,137,498; 314: Albright-Knox Art Gallery/Corbis; 315: RF; 316 (t): Blaine Harrington III/Corbis; 316 (m): Thierry Cariou/Corbis; 318: © Tate Gallery, London/Art Resource, NY © 2003 C.Herscovici, Brussels/Artists Rights Society (ARS), New York; 325 (t): AP-Wide World Photos; 325 (b): Mark Sadan; 332: Lester Lefkowitz/Corbis; 334: © The Nobel Foundation; 338: Tom Stewart/Corbis; 340: © Christie’s Images/Corbis; 341 (t): Melanie Einzig; 341 (b): NASA; 342: Graig Orsini/Index Stock
Imagery/PictureQuest; 343: Bettmann/Corbis; 344: CNAC/MNAM /Dist. Reunion des Musees Nationaux/Art Resource, NY, © 2003 Artists Rights Society (ARS), New York/ADAGP, Paris; 349 (t): RF; 349 (b): George D. Lepp/Corbis; 352: © Christie’s Images/Corbis; 353: Anna Clopet/Corbis; 354: Lowell Georgia/Corbis; 355 (t): Masaaahiro Sano/Corbis; 355 (b):Hulton-Deutsch Collection/Corbis; 356: Corbis

Chapter 7

359: Things Fall Apart: 2001, mixed media installation with vehicle; variable dimensions/San Francisco Museum of Modern Art, Accessions Committee Fund purchase © Sarah Sze; 361: Getty Images; 363: Ken Karp Photography; 364 (I): Science Museum/Science \& Society Picture Library; 364 (r): Science Museum/Science \& Society Picture Library; 366: Ken Karp Photography; $\mathbf{3 6 7}$ (m): Kevin Fleming/Corbis; 367 (b): Ken Karp Photography; 368: Mike Souther-Eye Ubiquitous/Corbis; 371 (t): Elizabeth Catlett (American, b 1915), Singing Their Songs, 1992, Lithograph on paper (a.p.\#6) 15-3/4 $\times 13-3 / 4 \mathrm{in}$. / National Museum of Women in the Arts, purchased with funds donated in memory of Florence Davis by her family, friends, and the NMWA Women's Committee; 371 (b): Ken Karp Photography; 373: Ken Karp Photography; 375 (t): Michael Boys/Corbis; 375 (m): Josiah Davidson/PictureQuest; 377: Scott T. Smith/Corbis; 378: Ken Karp Photography; 380: Christie’s Images/Corbis; 381: Wally McNamee/Corbis; 382: Vadim Makarov; 383 (m): Ken Karp Photography; 383 (bl): The Granger Collection, New York City; 383 (br): Bettmann/Corbis; $\mathbf{3 8 4}$ (bl): A. H. Rider/Photo Researchers, Inc.; 384 (br): Nigel J. Dennis/Photo Researchers, Inc. ; 389: © Jonathan Ferguson/Sunforge Studios; 391: Bettmann/Corbis; 393: Christie’s Images/SuperStock; 396: Digital Image © The Museum of Modern Art/Licensed by Scala/Art Resource, NY; 397 (t): Mehau Kulyk/Photo Researchers, Inc.; $\mathbf{3 9 7}$ (m): Hank Morgan/Photo Researchers, Inc.; 399: Cornelia Parker Mass (Colder Darker Matter), 1997, charcoal, wire and black string, Collection of Phoenix Art Museum, Gift of Jan and Howard Hendler 2002.1; 400: Ken Karp Photography; 403: Children Beyond Borders/VSA Arts (www.vsarts.org); 405: Karim Rashid Inc.; 408: Courtesy of 303 Gallery, New York-Victoria Miro Gallery, London; 409: Courtesy of the artist and Clifford-Smith Gallery, Boston. Photo courtesy of the artist; 411: W. Perry Conway/Corbis; 412: Mark Burnett/Photo Researchers; 421: Owen Franken/Corbis

Chapter 8

423: Corey Rich/Coreyography LLC; 428: Michael Prince/Corbis; $\mathbf{4 3 0}$ (t): Stefano Bianchetti/Corbis; 430 (b): David Lawrence/Corbis; 431: Timothy Rodwell; 434: Bettmann/Corbis; 436: The Brett Weston Archive/Corbis; 437: Nathan Benn/Corbis; 438: Streano Havens-Stock Connection/PictureQuest; 443: Roger Ressmeyer/Corbis; 448 (t):Scala/Art Resource, NY; 448 (b): Ken Karp Photography; 450: Getty Images; 452: Bettmann/Corbis; 454: Keren Su/Corbis; 457: Todd Gipstein/Corbis; 458: Jose Luis Pelaez, Inc./Corbis; 460: Ken Karp Photography; 463: Ken Karp Photography; 464: William James Warren/Corbis; 465 (t): Getty Images; 465 (b): Underwood \& Underwood/Corbis; 466 (t): Duomo/Corbis; 466 (b): RF; 469: James L. Amos/Corbis; 473: Chabot Observatory; 474: George Robinson-Stock Connection/PictureQuest; 476: Jay Syverson/Corbis; 478: Ken Karp Photography; 480: Getty Images; 481 (t): Bettmann/Corbis; 481 (b): Johnny Crawford/The Image Works; 482: © The New Yorker Collection from CartoonBank.com/Corbis; 484: Digital Image © The Museum of Modern Art/Licensed by Scala/Art Resource, NY; 485: Seguin Franck/Corbis Sygma

Chapter 9

487: Marion Brenner/Maya Lin Studio; 488: Corbis; 491: George Hall/Corbis; 492: Curtis O’Shock/ImageState; 493: RF; 494: Scott Snibbe; 495: Geoffrey Clements/Corbis; 496 (tl): Reunion des Musees Nationaux/Art Resource, NY;© L\&M Services B.V. Amsterdam 20030605; 496 (tr): Archivo Iconografico, S.A./Corbis; 496 (bl): Lee Snbider/Corbis; 496 (br): St. Louis Science Center; 499 (t): The Museum of Modern Art, Licensed by SCALA/Art Resource, NY; 499 (b): Ken Karp Photography; 502: Ken Karp Photography; 503: Alan Schein Photography/Corbis; 505 (t): Museum of Science and Industry, Chicago, Illinois; 505 (b): Ed Eckstein/Corbis; 507 (t): Paul Almasy/Corbis; 507 (b): Michael Gadomski/Photo Researchers; 509: Robert Landau/Corbis; 512: Lee Foster/Bruce Coleman Inc.; 513: RF; 514: Fermi National Accelerator Laboratory; 518: Ken Karp Photography; 521: W. Cody/Corbis; 525: Frank Zullo/Photo Researchers, Inc.; 526 (t): Fermi National Accelerator Laboratory; 526 (b): Fermi National Accelerator Laboratory; 528: Christie’s Images/Corbis; 533: U.S. Coast Guard; 536: Mary Sullivan; 537: Ken Karp Photography; 542: Cheryl Fenton; 549: Robert Essel NYC/Corbis; 551: Alinari/Art Resource, NY © 2003 Artists Rights Society (ARS) New York/Pro Litteris, Zurich; 556: Cheryl Fenton; 560: Julian Calder/Corbis

Chapter 10

564: Courtesy George Eastman House; 565: Artwork photo by James Hart, Courtesy of Charlotte Jackson Fine Art, Santa Fe, NM, installation photo by Jorg Jakoby; 571: Courtesy NationalSolar Observatory/Sacramento Peak; 572: Lester Lefkowitz/Corbis;573: Courtesy of the artist and Hooks-Epstein Gallery, Houston,TX; 577: RF; 579: Bettmann/Corbis; 581: RF; 582: FOXTROT © Bill Amend.Reprinted with permission of UNIVERSAL PRESS SYNDICATE.All rights reserved; 583: Corbis; 585: Ken Karp Photography; 586 (t): Burstein Collection/Corbis; 586 (b): RF; 590: Historical Picture Archive/Corbis; 592: National Geographic/Getty Images; 593: Phil
Degginger/Bruce Coleman Inc.; 599: Ken Karp Photography; 601 (I):Michael Busselle/Corbis; 601 (r): NOAA/Center for Operational Oceanographic Products and Services; 603: Getty Images; 605: Michael S.
Yamashita/Corbis; 606: Bettmann/Corbis; 607: Cedar Point Park; 613: Scott Walking Adventures; 615:Reuters NewMedia Inc./Corbis; 626: Collection of the Artist, Courtesy of the Oakland Museum of California, photo by Michael Temperio

Chapter 11

629: Courtesy of the artist and Lehmann Maupin Gallery, New York; 630: Binod Joshi/AP-Wide World Photos; 634: Bettmann/Corbis; 635 (t): Cheryl Fenton; 635 (b): Joseph Sohm-Visions of America/ Corbis; 636: Mark Langford-Index Stock Imagery/PictureQuest;

