10 Probability

- Sample Spaces and Probability 10.1
- 10.2 Independent and Dependent Events
- Two-Way Tables and Probability 10.3
- Probability of Disjoint and Overlapping Events 10.4
- 10.5 Permutations and Combinations
- 10.6 **Binomial Distributions**

Class Ring (p. 583)

Horse Racing (p. 571)

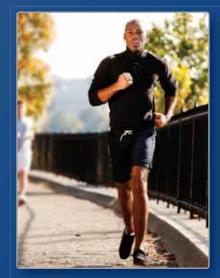
 \rightarrow

 \sim

Tree Growth (p. 568)

 \triangleright

Coaching (p. 552)



Jogging (p. 557)

Maintaining Mathematical Proficiency

Finding a Percent

Example 1 What percent of 12 is 9?

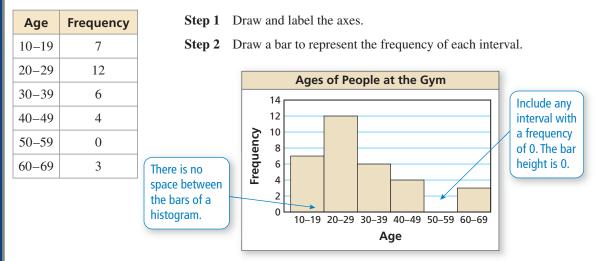
 $\frac{a}{w} = \frac{p}{100}$ Write the percent proportion. $\frac{9}{12} = \frac{p}{100}$ Substitute 9 for a and 12 for w. $100 \cdot \frac{9}{12} = 100 \cdot \frac{p}{100}$ Multiplication Property of Equality.75 = pSimplify.So, 9 is 75% of 12.

Write and solve a proportion to answer the question.

1. What percent of 30 is 6? 2. What number is 68% of 25? 3. 34.4 is what percent of 86?

Making a Histogram

Example 2 The frequency table shows the ages of people at a gym. Display the data in a histogram.



Display the data in a histogram.

4.		Movies \	Natched p	er Week
	Movies	0-1	2-3	4-5
	Frequency	35	11	6

5. ABSTRACT REASONING You want to purchase either a sofa or an arm chair at a furniture store. Each item has the same retail price. The sofa is 20% off. The arm chair is 10% off, and you have a coupon to get an additional 10% off the discounted price of the chair. Are the items equally priced after the discounts are applied? Explain.

Mathematically proficient students apply the mathematics they know to solve real-life problems.

Modeling with Mathematics

G Core Concept

Likelihoods and Probabilities

The **probability of an event** is a measure of the likelihood that the event will occur. Probability is a number from 0 to 1, including 0 and 1. The diagram relates *likelihoods* (described in words) and probabilities.

Words	Impossible	ha	Equally likely to ppen or not hap		Certain
		Unlikely		Likely	
		1	1	1	
Fraction	0	<u>1</u>	<u>1</u>	<u>3</u>	1
		4	2	4	
Decimal	0	0.25	0.5	0.75	1
Percent	0%	25%	50%	75%	100%

EXAMPLE 1 Describing Likelihoods

Describe the likelihood of each event.

Probability of an Asteroid or a Meteoroid Hitting Earth							
Name	Diameter	Probability of impact	Flyby date				
a. Meteoroid	6 in.	0.75	Any day				
b. Apophis	886 ft	0	2029				
c. 2000 SG344	121 ft	$\frac{1}{435}$	2068–2110				

SOLUTION

- **a.** On any given day, it is *likely* that a meteoroid of this size will enter Earth's atmosphere. If you have ever seen a "shooting star," then you have seen a meteoroid.
- **b.** A probability of 0 means this event is *impossible*.
- **c.** With a probability of $\frac{1}{435} \approx 0.23\%$, this event is very *unlikely*. Of 435 identical asteroids, you would expect only one of them to hit Earth.

Monitoring Progress

In Exercises 1 and 2, describe the event as unlikely, equally likely to happen or not happen, or likely. Explain your reasoning.

- **1.** The oldest child in a family is a girl.
- 2. The two oldest children in a family with three children are girls.
- **3.** Give an example of an event that is certain to occur.

10.1 Sample Spaces and Probability

Essential Question How can you list the possible outcomes in

the sample space of an experiment?

The **sample space** of an experiment is the set of all possible outcomes for that experiment.

EXPLORATION 1

I Finding the Sample Space of an Experiment

Work with a partner. In an experiment, three coins are flipped. List the possible outcomes in the sample space of the experiment.

EXPLORATION 2

2 Finding the Sample Space of an Experiment

Work with a partner. List the possible outcomes in the sample space of the experiment.

- **a.** One six-sided die is rolled.
- **b.** Two six-sided dice are rolled.

Finding the Sample Space of an Experiment

Work with a partner. In an experiment, a spinner is spun.

- **a.** How many ways can you spin a 1? 2? 3? 4? 5?
- **b.** List the sample space.

EXPLORATION 3

c. What is the total number of outcomes?

EXPLORATION 4 Finding the Sample Space of an Experiment

Work with a partner. In an experiment, a bag contains 2 blue marbles and 5 red marbles. Two marbles are drawn from the bag.

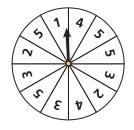
- **a.** How many ways can you choose two blue? a red then blue? a blue then red? two red?
- **b.** List the sample space.
- c. What is the total number of outcomes?

Communicate Your Answer

- 5. How can you list the possible outcomes in the sample space of an experiment?
- **6.** For Exploration 3, find the ratio of the number of each possible outcome to the total number of outcomes. Then find the sum of these ratios. Repeat for Exploration 4. What do you observe?

LOOKING FOR A PATTERN

To be proficient in math, you need to look closely to discern a pattern or structure.



10.1 Lesson

Core Vocabulary

probability experiment, *p. 538* outcome, *p. 538* event, *p. 538* sample space, *p. 538* probability of an event, *p. 538* theoretical probability, *p. 539* geometric probability, *p. 540* experimental probability, *p. 541*

Previous

tree diagram

What You Will Learn

- Find sample spaces.
- Find theoretical probabilities.
- Find experimental probabilities.

Sample Spaces

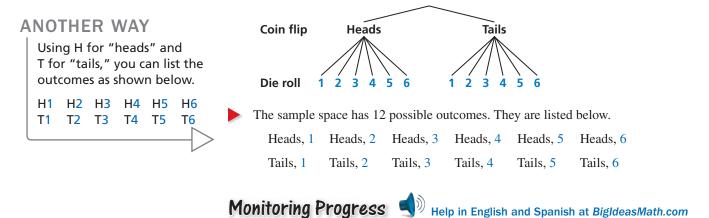
A **probability experiment** is an action, or trial, that has varying results. The possible results of a probability experiment are **outcomes**. For instance, when you roll a six-sided die, there are 6 possible outcomes: 1, 2, 3, 4, 5, or 6. A collection of one or more outcomes is an **event**, such as rolling an odd number. The set of all possible outcomes is called a **sample space**.

EXAMPLE 1 Finding a Sample Space

You flip a coin and roll a six-sided die. How many possible outcomes are in the sample space? List the possible outcomes.

SOLUTION

Use a tree diagram to find the outcomes in the sample space.



Find the number of possible outcomes in the sample space. Then list the possible outcomes.

1. You flip two coins. 2. You flip two coins and roll a six-sided die.

Theoretical Probabilities

The **probability of an event** is a measure of the likelihood, or chance, that the event will occur. Probability is a number from 0 to 1, including 0 and 1, and can be expressed as a decimal, fraction, or percent.

Impossible		Equally likely to open or not happ		Certain
	Unlikely		Likely	
	I	I	1	
0	1	1	3	1
	4	2	4	
0	0.25	0.5	0.75	1
0%	25%	50%	75%	100%

ATTENDING TO PRECISION

Notice that the question uses the phrase "exactly two answers." This phrase is more precise than saying "two answers," which may be interpreted as "at least two" or as "exactly two." The outcomes for a specified event are called *favorable outcomes*. When all outcomes are equally likely, the **theoretical probability** of the event can be found using the following.

Theoretical probability = $\frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$

The probability of event *A* is written as P(A).

EXAMPLE 2 Finding a Theoretical Probability

A student taking a quiz randomly guesses the answers to four true-false questions. What is the probability of the student guessing exactly two correct answers?

SOLUTION

Step 1 Find the outcomes in the sample space. Let C represent a correct answer and I represent an incorrect answer. The possible outcomes are:

	Number correct		Outcome		
0		0	IIII		
	1		CIII ICII IICI IIIC		
exactly t correc	rect 3		IICC ICIC ICCI CIIC CICI CCII		
			ICCC CICC CCIC CCCI		
4		4	CCCC		

- **Step 2** Identify the number of favorable outcomes and the total number of outcomes. There are 6 favorable outcomes with exactly two correct answers and the total number of outcomes is 16.
- **Step 3** Find the probability of the student guessing exactly two correct answers. Because the student is randomly guessing, the outcomes should be equally likely. So, use the theoretical probability formula.

 $P(\text{exactly two correct answers}) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$ $= \frac{6}{16}$ $= \frac{3}{8}$

The probability of the student guessing exactly two correct answers is $\frac{3}{8}$, or 37.5%.

The sum of the probabilities of all outcomes in a sample space is 1. So, when you know the probability of event *A*, you can find the probability of the *complement* of event *A*. The *complement* of event *A* consists of all outcomes that are not in *A* and is denoted by \overline{A} . The notation \overline{A} is read as "*A* bar." You can use the following formula to find $P(\overline{A})$.

G Core Concept

Probability of the Complement of an Event

The probability of the complement of event A is

 $P(\overline{A}) = 1 - P(A).$

Finding Probabilities of Complements

When two six-sided dice are rolled, there are 36 possible outcomes, as shown. Find the probability of each event.

- a. The sum is not 6.
- **b.** The sum is less than or equal to 9.

SOLUTION

- **a.** $P(\text{sum is not } 6) = 1 P(\text{sum is } 6) = 1 \frac{5}{36} = \frac{31}{36} \approx 0.861$

b.
$$P(\text{sum} \le 9) = 1 - P(\text{sum} > 9) = 1 - \frac{6}{36} = \frac{30}{36} = \frac{5}{6} \approx 0.833$$

Some probabilities are found by calculating a ratio of two lengths, areas, or volumes. Such probabilities are called **geometric probabilities**.

EXAMPLE 4 Using Area to Find Probability

You throw a dart at the board shown. Your dart is equally likely to hit any point inside the square board. Are you more likely to get 10 points or 0 points?

SOLUTION

The probability of getting 10 points is

$$P(10 \text{ points}) = \frac{\text{Area of smallest circle}}{\text{Area of entire board}} = \frac{\pi \cdot 3^2}{18^2} = \frac{9\pi}{324} = \frac{\pi}{36} \approx 0.0873$$

The probability of getting 0 points is

$$P(0 \text{ points}) = \frac{\text{Area outside largest circle}}{\text{Area of entire board}}$$
$$= \frac{18^2 - (\pi \cdot 9^2)}{18^2}$$
$$= \frac{324 - 81\pi}{324}$$
$$= \frac{4 - \pi}{4}$$
$$\approx 0.215.$$

You are more likely to get 0 points.

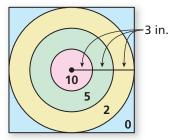
Monitoring Progress (Help in English and Spanish at BigldeasMath.com

3. You flip a coin and roll a six-sided die. What is the probability that the coin shows tails and the die shows 4?

Find $P(\overline{A})$.

4. $P(A) = 0.45$	5. $P(A) = \frac{1}{4}$
6. $P(A) = 1$	7. $P(A) = 0.03$

- 8. In Example 4, are you more likely to get 10 points or 5 points?
- 9. In Example 4, are you more likely to score points (10, 5, or 2) or get 0 points?



Experimental Probabilities

An **experimental probability** is based on repeated *trials* of a probability experiment. The number of trials is the number of times the probability experiment is performed. Each trial in which a favorable outcome occurs is called a *success*. The experimental probability can be found using the following.

Experimental probability = $\frac{\text{Number of successes}}{\text{Number of trials}}$

EXAMPLE 5

Finding an Experimental Probability

Each section of the spinner shown has the same area. The spinner was spun 20 times. The table shows the results. For which color is the experimental probability of stopping on the color the same as the theoretical probability?

SOLUTION

The theoretical probability of stopping on each of the four colors is $\frac{1}{4}$. Use the outcomes in the table to find the experimental probabilities.

$P(\text{red}) = \frac{5}{20} = \frac{1}{4}$	$P(\text{green}) = \frac{9}{20}$
$P(\text{blue}) = \frac{3}{20}$	$P(\text{yellow}) = \frac{3}{20}$

The experimental probability of stopping on red is the same as the theoretical probability.

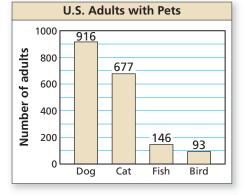
EXAMPLE 6

Solving a Real-Life Problem

In the United States, a survey of 2184 adults ages 18 and over found that 1328 of them have at least one pet. The types of pets these adults have are shown in the figure. What is the probability that a pet-owning adult chosen at random has a dog?

SOLUTION

The number of trials is the number of pet-owning adults, 1328. A success is a pet-owning adult who has a dog. From the graph, there are 916 adults who said that they have a dog.



$$P(\text{pet-owning adult has a dog}) = \frac{916}{1328} = \frac{229}{332} \approx 0.690$$

The probability that a pet-owning adult chosen at random has a dog is about 69%.

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

- **10.** In Example 5, for which color is the experimental probability of stopping on the color greater than the theoretical probability?
- **11.** In Example 6, what is the probability that a pet-owning adult chosen at random owns a fish?

Spinner Results						
red	green	blue	yellow			
5	9	3	3			

10.1 Exercises

-Vocabulary and Core Concept Check

- COMPLETE THE SENTENCE A number that describes the likelihood of an event is the ______ the event.
- 2. WRITING Describe the difference between theoretical probability and experimental probability.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, find the number of possible outcomes in the sample space. Then list the possible outcomes. (See Example 1.)

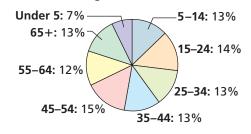
- **3.** You roll a die and flip three coins.
- **4.** You flip a coin and draw a marble at random from a bag containing two purple marbles and one white marble.
- **5.** A bag contains four red cards numbered 1 through 4, four white cards numbered 1 through 4, and four black cards numbered 1 through 4. You choose a card at random.
- **6.** You draw two marbles without replacement from a bag containing three green marbles and four black marbles.
- **7. PROBLEM SOLVING** A game show airs on television five days per week. Each day, a prize is randomly placed behind one of two doors. The contestant wins the prize by selecting the correct door. What is the probability that exactly two of the five contestants win a prize during a week? (*See Example 2.*)

- 8. **PROBLEM SOLVING** Your friend has two standard decks of 52 playing cards and asks you to randomly draw one card from each deck. What is the probability that you will draw two spades?
- **9. PROBLEM SOLVING** When two six-sided dice are rolled, there are 36 possible outcomes. Find the probability that (a) the sum is not 4 and (b) the sum is greater than 5. *(See Example 3.)*

10. PROBLEM SOLVING The age distribution of a population is shown. Find the probability of each event.

Age Distribution

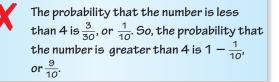
of



- a. A person chosen at random is at least 15 years old.
- **b.** A person chosen at random is from 25 to 44 years old.
- **11. ERROR ANALYSIS** A student randomly guesses the answers to two true-false questions. Describe and correct the error in finding the probability of the student guessing both answers correctly.

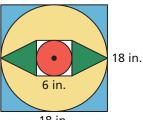
The student can either guess two incorrect answers, two correct answers, or one of each. So the probability of guessing both answers correctly is $\frac{1}{3}$.

12. ERROR ANALYSIS A student randomly draws a number between 1 and 30. Describe and correct the error in finding the probability that the number drawn is greater than 4.



13. MATHEMATICAL CONNECTIONS

You throw a dart at the board shown. Your dart is equally likely to hit any point inside the square board. What is the probability your dart lands in the yellow region? (See Example 4.)



18 in.

14. MATHEMATICAL CONNECTIONS The map shows the length (in miles) of shoreline along the Gulf of Mexico for each state that borders the body of water. What is the probability that a ship coming ashore at a random point in the Gulf of Mexico lands in the given state?

c. Florida **d.** Louisiana

15. DRAWING CONCLUSIONS You roll a six-sided die 60 times. The table shows the results. For which number is the experimental probability of rolling the number the same as the theoretical probability? *(See Example 5.)*

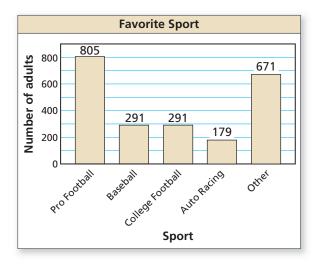
	Six-sided Die Results						
•	•	•••					
11	14	7	10	6	12		

16. DRAWING CONCLUSIONS A bag contains 5 marbles that are each a different color. A marble is drawn, its color is recorded, and then the marble is placed back in the bag. This process is repeated until 30 marbles have been drawn. The table shows the results. For which marble is the experimental probability of drawing the marble the same as the theoretical probability?

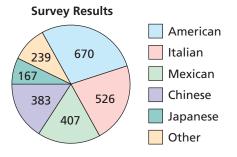
Drawing Results						
white	black	red	green	blue		
5	6	8	2	9		

- **17. REASONING** Refer to the spinner shown. The spinner is divided into sections with the same area.
 - **a.** What is the theoretical probability that the spinner stops on a multiple of 3?
 - b. You spin the spinner 30 times. It stops on a multiple of 3 twenty times. What is the experimental probability of stopping on a multiple of 3?

- **c.** Explain why the probability you found in part (b) is different than the probability you found in part (a).
- **18. OPEN-ENDED** Describe a real-life event that has a probability of 0. Then describe a real-life event that has a probability of 1.
- **19. DRAWING CONCLUSIONS** A survey of 2237 adults ages 18 and over asked which sport is their favorite. The results are shown in the figure. What is the probability that an adult chosen at random prefers auto racing? (*See Example 6.*)



20. DRAWING CONCLUSIONS A survey of 2392 adults ages 18 and over asked what type of food they would be most likely to choose at a restaurant. The results are shown in the figure. What is the probability that an adult chosen at random prefers Italian food?

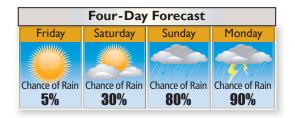


21. ANALYZING RELATIONSHIPS Refer to the board in Exercise 13. Order the likelihoods that the dart lands in the given region from least likely to most likely.

Α.	green	B.	not blue

C. red D. not yellow

22. ANALYZING RELATIONSHIPS Refer to the chart below. Order the following events from least likely to most likely.



- **A.** It rains on Sunday.
- B. It does not rain on Saturday.
- C. It rains on Monday.
- **D.** It does not rain on Friday.
- **23. USING TOOLS** Use the figure in Example 3 to answer each question.
 - **a.** List the possible sums that result from rolling two six-sided dice.
 - **b.** Find the theoretical probability of rolling each sum.
 - **c.** The table below shows a simulation of rolling two six-sided dice three times. Use a random number generator to simulate rolling two six-sided dice 50 times. Compare the experimental probabilities of rolling each sum with the theoretical probabilities.

	А	В	С
1	First Die	Second Die	Sum
2	4	6	10
З	3	5	8
4	1	6	7
F			

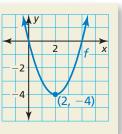
24. MAKING AN ARGUMENT You flip a coin three times. It lands on heads twice and on tails once. Your friend concludes that the theoretical probability of the coin landing heads up is $P(\text{heads up}) = \frac{2}{3}$. Is your friend correct? Explain your reasoning.

25. MATHEMATICAL CONNECTIONS

A sphere fits inside a cube so that it touches each side, as shown. What is the probability a point chosen at random inside the cube is also inside the sphere?

26. HOW DO YOU SEE IT?

Consider the graph of *f* shown. What is the probability that the graph of y = f(x) + c intersects the *x*-axis when *c* is a randomly chosen integer from 1 to 6? Explain.



- **27. DRAWING CONCLUSIONS** A manufacturer tests 1200 computers and finds that 9 of them have defects. Find the probability that a computer chosen at random has a defect. Predict the number of computers with defects in a shipment of 15,000 computers. Explain your reasoning.
- **28. THOUGHT PROVOKING** The tree diagram shows a sample space. Write a probability problem that can be represented by the sample space. Then write the answer(s) to the problem.

Box A	Box B	Outcomes	Sum	Product	
1	1	(1, 1)	2	1	
	<u> </u>	(1, 2)	3	2	
1	1	(2, 1)	3	2	
\sum^{2}	<u> </u>	(2, 2)	4	4	
	1	(3, 1)	4	3	
3~	<u> </u>	(3, 2)	5	6	

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Find the product or quotient.	(Section 7.3)	
29. $\frac{3x}{y} \cdot \frac{2x^3}{y^2}$	30. $\frac{4x^9y}{3x^3} \cdot \frac{2xy}{8y^2}$	31. $\frac{x+3}{x^4-2} \cdot (x^2-7x+6)$
32. $\frac{2y}{5x} \div \frac{y}{6x}$	33. $\frac{3x}{12x-11} \div \frac{x+1}{5x}$	34. $\frac{3x^2 + 2x - 13}{x^4} \div (x^2 + 9)$

10.2 Independent and Dependent Events

Essential Question How can you determine whether two

events are independent or dependent?

Two events are **independent events** when the occurrence of one event does not affect the occurrence of the other event. Two events are **dependent events** when the occurrence of one event *does* affect the occurrence of the other event.

EXPLORATION 1 Identifying Independent and Dependent Events

Work with a partner. Determine whether the events are independent or dependent. Explain your reasoning.

- **a.** Two six-sided dice are rolled.
- **b.** Six pieces of paper, numbered 1 through 6, are in a bag. Two pieces of paper are selected one at a time without replacement.

EXPLORATION 2

Finding Experimental Probabilities

Work with a partner.

- **a.** In Exploration 1(a), experimentally estimate the probability that the sum of the two numbers rolled is 7. Describe your experiment.
- **b.** In Exploration 1(b), experimentally estimate the probability that the sum of the two numbers selected is 7. Describe your experiment.

EXPLORATION 3 Finding Theoretical Probabilities

Work with a partner.

- **a.** In Exploration 1(a), find the theoretical probability that the sum of the two numbers rolled is 7. Then compare your answer with the experimental probability you found in Exploration 2(a).
- **b.** In Exploration 1(b), find the theoretical probability that the sum of the two numbers selected is 7. Then compare your answer with the experimental probability you found in Exploration 2(b).
- c. Compare the probabilities you obtained in parts (a) and (b).

Communicate Your Answer

- 4. How can you determine whether two events are independent or dependent?
- **5.** Determine whether the events are independent or dependent. Explain your reasoning.
 - a. You roll a 4 on a six-sided die and spin red on a spinner.
 - **b.** Your teacher chooses a student to lead a group, chooses another student to lead a second group, and chooses a third student to lead a third group.

REASONING ABSTRACTLY

To be proficient in math, you need to make sense of quantities and their relationships in problem - situations.

10.2 Lesson

Core Vocabulary

independent events, *p. 546* dependent events, *p. 547* conditional probability, *p. 547*

Previous probability sample space

What You Will Learn

- Determine whether events are independent events.
- Find probabilities of independent and dependent events.
- Find conditional probabilities.

Determining Whether Events Are Independent

Two events are **independent events** when the occurrence of one event does not affect the occurrence of the other event.

💪 Core Concept

Probability of Independent Events

Words Two events *A* and *B* are independent events if and only if the probability that both events occur is the product of the probabilities of the events.

Symbols $P(A \text{ and } B) = P(A) \cdot P(B)$

EXAMPLE 1

Determining Whether Events Are Independent

A student taking a quiz randomly guesses the answers to four true-false questions. Use a sample space to determine whether guessing Question 1 correctly and guessing Question 2 correctly are independent events.

SOLUTION

Using the sample space in Example 2 on page 539:

$$P(\text{correct on Question 1}) = \frac{8}{16} = \frac{1}{2}$$
 $P(\text{correct on Question 2}) = \frac{8}{16} = \frac{1}{2}$

P(correct on Question 1 and correct on Question 2) = $\frac{4}{16} = \frac{1}{4}$

Because $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$, the events are independent.

EXAMPLE 2

Determining Whether Events Are Independent

A group of four students includes one boy and three girls. The teacher randomly selects one of the students to be the speaker and a different student to be the recorder. Use a sample space to determine whether randomly selecting a girl first and randomly selecting a girl second are independent events.

SOLUTION

Let B represent the boy. Let G_1 , G_2 , and G_3 represent the three girls. Use a table to list the outcomes in the sample space.

Using the sample space:

$$P(\text{girl first}) = \frac{9}{12} = \frac{3}{4}$$
 $P(\text{girl second}) = \frac{9}{12} = \frac{3}{4}$

 $P(\text{girl first and girl second}) = \frac{6}{12} = \frac{1}{2}$

Because $\frac{3}{4} \cdot \frac{3}{4} \neq \frac{1}{2}$, the events are not independent.

Number of girls	Outcome		
1	G ₁ B	BG ₁	
1	G ₂ B	BG ₂	
1	G ₃ B	BG ₃	
2	G_1G_2	G_2G_1	
2	G_1G_3	G_3G_1	
2	G ₂ G ₃	G_3G_2	

Monitoring Progress 🚽 Help in English and Spanish at BigldeasMath.com

- **1.** In Example 1, determine whether guessing Question 1 incorrectly and guessing Question 2 correctly are independent events.
- **2.** In Example 2, determine whether randomly selecting a girl first and randomly selecting a boy second are independent events.

Finding Probabilities of Events

In Example 1, it makes sense that the events are independent because the second guess should not be affected by the first guess. In Example 2, however, the selection of the second person *depends* on the selection of the first person because the same person cannot be selected twice. These events are *dependent*. Two events are **dependent events** when the occurrence of one event *does* affect the occurrence of the other event.

The probability that event *B* occurs given that event *A* has occurred is called the **conditional probability** of *B* given *A* and is written as P(B|A).

MAKING SENSE OF PROBLEMS

One way that you can find *P*(girl second | girl first) is to list the 9 outcomes in which a girl is chosen first and then find the fraction of these outcomes in which a girl is chosen second:

🔄 Core Concept

Probability of Dependent Events

- **Words** If two events *A* and *B* are dependent events, then the probability that both events occur is the product of the probability of the first event and the conditional probability of the second event given the first event.
- **Symbols** $P(A \text{ and } B) = P(A) \bullet P(B|A)$
- **Example** Using the information in Example 2:

 $P(\text{girl first and girl second}) = P(\text{girl first}) \cdot P(\text{girl second}|\text{girl first})$

 $=\frac{9}{12}\cdot\frac{6}{9}=\frac{1}{2}$

EXAMPLE 3

Finding the Probability of Independent Events

As part of a board game, you need to spin the spinner, which is divided into equal parts. Find the probability that you get a 5 on your first spin and a number greater than 3 on your second spin.

SOLUTION

Let event A be "5 on first spin" and let event B be "greater than 3 on second spin."

The events are independent because the outcome of your second spin is not affected by the outcome of your first spin. Find the probability of each event and then multiply the probabilities.

$$P(A) = \frac{1}{8}$$
 1 of the 8 sections is a "5."

 $P(B) = \frac{5}{8}$
 5 of the 8 sections (4, 5, 6, 7, 8) are greater than 3.

 $P(A \text{ and } B) = P(A) \bullet P(B) = \frac{1}{8} \bullet \frac{5}{8} = \frac{5}{64} \approx 0.078$

So, the probability that you get a 5 on your first spin and a number greater than 3 on your second spin is about 7.8%.

Finding the Probability of Dependent Events

A bag contains twenty \$1 bills and five \$100 bills. You randomly draw a bill from the bag, set it aside, and then randomly draw another bill from the bag. Find the probability that both events A and B will occur.

Event *A*: The first bill is \$100. **Event** *B*: The second bill is \$100.

SOLUTION

The events are dependent because there is one less bill in the bag on your second draw than on your first draw. Find P(A) and P(B|A). Then multiply the probabilities.

$P(A) = \frac{5}{25}$	5 of the 25 bills are \$100 bills.
$P(B A) = \frac{4}{24}$	4 of the remaining 24 bills are \$100 bills.

$$P(A \text{ and } B) = P(A) \cdot P(B|A) = \frac{5}{25} \cdot \frac{4}{24} = \frac{1}{5} \cdot \frac{1}{6} = \frac{1}{30} \approx 0.033.$$

So, the probability that you draw two \$100 bills is about 3.3%.

EXAMPLE 5 Comparing Independent and Dependent Events

You randomly select 3 cards from a standard deck of 52 playing cards. What is the probability that all 3 cards are hearts when (a) you replace each card before selecting the next card, and (b) you do not replace each card before selecting the next card? Compare the probabilities.

SOLUTION

Let event *A* be "first card is a heart," event *B* be "second card is a heart," and event *C* be "third card is a heart."

a. Because you replace each card before you select the next card, the events are independent. So, the probability is

$$P(A \text{ and } B \text{ and } C) = P(A) \cdot P(B) \cdot P(C) = \frac{13}{52} \cdot \frac{13}{52} \cdot \frac{13}{52} = \frac{1}{64} \approx 0.016.$$

b. Because you do not replace each card before you select the next card, the events are dependent. So, the probability is

$$P(A \text{ and } B \text{ and } C) = P(A) \bullet P(B|A) \bullet P(C|A \text{ and } B)$$

$$=\frac{13}{52}\cdot\frac{12}{51}\cdot\frac{11}{50}=\frac{11}{850}\approx 0.013.$$

So, you are $\frac{1}{64} \div \frac{11}{850} \approx 1.2$ times more likely to select 3 hearts when you replace each card before you select the next card.

Monitoring Progress (Help in English and Spanish at BigldeasMath.com

- **3.** In Example 3, what is the probability that you spin an even number and then an odd number?
- **4.** In Example 4, what is the probability that both bills are \$1 bills?
- **5.** In Example 5, what is the probability that none of the cards drawn are hearts when (a) you replace each card, and (b) you do not replace each card? Compare the probabilities.

STUDY TIP The formulas for finding probabilities of independent and dependent events can be extended to three or more events.

Finding Conditional Probabilities

EXAMPLE 6

Using a Table to Find Conditional Probabilities

	Pass	Fail
Defective	3	36
Non-defective	450	11

A quality-control inspector checks for defective parts. The table shows the results of the inspector's work. Find (a) the probability that a defective part "passes," and (b) the probability that a non-defective part "fails."

SOLUTION

a.
$$P(\text{pass}|\text{defective}) = \frac{\text{Number of defective parts "passed"}}{\text{Total number of defective parts}}$$

$$=\frac{3}{3+36}=\frac{3}{39}=\frac{1}{13}\approx 0.077, \text{ or about } 7.7\%$$

b. $P(\text{fail}|\text{non-defective}) = \frac{\text{Number of non-defective parts "failed"}}{\text{Total number of non-defective parts}}$

 $=\frac{11}{450+11}=\frac{11}{461}\approx 0.024$, or about 2.4%

STUDY TIP

Note that when A and B are independent, this rule still applies because P(B) = P(B|A).

You can rewrite the formula for the probability of dependent events to write a rule for finding conditional probabilities.

$$P(A) \bullet P(B | A) = P(A \text{ and } B)$$
 Write formula.
$$P(B | A) = \frac{P(A \text{ and } B)}{P(A)}$$
 Divide each side by *P*(*A*).

EXAMPLE 7 **Finding a Conditional Probability**

At a school, 60% of students buy a school lunch. Only 10% of students buy lunch and dessert. What is the probability that a student who buys lunch also buys dessert?

SOLUTION

Let event A be "buys lunch" and let event B be "buys dessert." You are given P(A) = 0.6 and P(A and B) = 0.1. Use the formula to find P(B|A).

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$
Write formula for conditional probability.

$$= \frac{0.1}{0.6}$$
Substitute 0.1 for P(A and B) and 0.6 for P(A).

$$= \frac{1}{6} \approx 0.167$$
Simplify.
So, the probability that a student who buys lunch also buys dessert is

about 16.7%.

Monitoring Progress (1) Help in English and Spanish at BigldeasMath.com

- 6. In Example 6, find (a) the probability that a non-defective part "passes," and (b) the probability that a defective part "fails."
- 7. At a coffee shop, 80% of customers order coffee. Only 15% of customers order coffee and a bagel. What is the probability that a customer who orders coffee also orders a bagel?

-Vocabulary and Core Concept Check

- **1. WRITING** Explain the difference between dependent events and independent events, and give an example of each.
- 2. COMPLETE THE SENTENCE The probability that event *B* will occur given that event *A* has occurred is called the ______ of *B* given *A* and is written as ______.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, tell whether the events are independent or dependent. Explain your reasoning.

3. A box of granola bars contains an assortment of flavors. You randomly choose a granola bar and eat it. Then you randomly choose another bar.

Event *A***:** You choose a coconut almond bar first. **Event** *B***:** You choose a cranberry almond bar second.

4. You roll a six-sided die and flip a coin.

Event A: You get a 4 when rolling the die.

Event *B*: You get tails when flipping the coin.

5. Your MP3 player contains hip-hop and rock songs. You randomly choose a song. Then you randomly choose another song without repeating song choices.

Event *A***:** You choose a hip-hop song first. **Event** *B***:** You choose a rock song second.

6. There are 22 novels of various genres on a shelf. You randomly choose a novel and put it back. Then you randomly choose another novel.

Event *A*: You choose a mystery novel. **Event** *B*: You choose a science fiction novel. In Exercises 7–10, determine whether the events are independent. (*See Examples 1 and 2.*)

7. You play a game that involves spinning a wheel. Each section of the wheel shown has the same area. Use a sample space to determine whether randomly spinning blue and then green are independent events.

- **8.** You have one red apple and three green apples in a bowl. You randomly select one apple to eat now and another apple for your lunch. Use a sample space to determine whether randomly selecting a green apple first and randomly selecting a green apple second are independent events.
- **9.** A student is taking a multiple-choice test where each question has four choices. The student randomly guesses the answers to the five-question test. Use a sample space to determine whether guessing Question 1 correctly and Question 2 correctly are independent events.
- **10.** A vase contains four white roses and one red rose. You randomly select two roses to take home. Use a sample space to determine whether randomly selecting a white rose first and randomly selecting a white rose second are independent events.
- 11. PROBLEM SOLVING You play a game that involves spinning the money wheel shown. You spin the wheel twice. Find the probability that you get more than \$500 on your first spin and then go bankrupt on your second spin. (See Example 3.)

- **12. PROBLEM SOLVING** You play a game that involves drawing two numbers from a hat. There are 25 pieces of paper numbered from 1 to 25 in the hat. Each number is replaced after it is drawn. Find the probability that you will draw the 3 on your first draw and a number greater than 10 on your second draw.
- **13. PROBLEM SOLVING** A drawer contains 12 white socks and 8 black socks. You randomly choose 1 sock and do not replace it. Then you randomly choose another sock. Find the probability that both events *A* and *B* will occur. (*See Example 4.*)

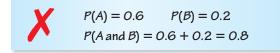
Event A: The first sock is white.

Event B: The second sock is white.

14. PROBLEM SOLVING A word game has 100 tiles, 98 of which are letters and 2 of which are blank. The numbers of tiles of each letter are shown. You randomly draw 1 tile, set it aside, and then randomly draw another tile. Find the probability that both events *A* and *B* will occur.

Event A:	A - 9	H - 2	0 - 8	J – 2
The first tile			P - 2 V	
is a consonant.				
Event B:			Q - 1)	
The second tile	D – 4	K – 1	R - 6	Y - 2
is a vowel.	E – 12	L - 4	S - 4	Z – 1
			T - 6	
	G – 3	N - 6	U - 4 B	lank

15. ERROR ANALYSIS Events *A* and *B* are independent. Describe and correct the error in finding *P*(*A* and *B*).



16. ERROR ANALYSIS A shelf contains 3 fashion magazines and 4 health magazines. You randomly choose one to read, set it aside, and randomly choose another for your friend to read. Describe and correct the error in finding the probability that both events *A* and *B* occur.

Event A: The first magazine is fashion.

Event *B*: The second magazine is health.

$$P(A) = \frac{3}{7} \qquad P(B|A) = \frac{4}{7}$$
$$P(A \text{ and } B) = \frac{3}{7} \cdot \frac{4}{7} = \frac{12}{49} \approx 0.245$$

17. NUMBER SENSE Events *A* and *B* are independent. Suppose P(B) = 0.4 and P(A and B) = 0.13. Find P(A).

- **18.** NUMBER SENSE Events *A* and *B* are dependent. Suppose P(B|A) = 0.6 and P(A and B) = 0.15. Find P(A).
- **19. ANALYZING RELATIONSHIPS** You randomly select three cards from a standard deck of 52 playing cards. What is the probability that all three cards are face cards when (a) you replace each card before selecting the next card, and (b) you do not replace each card before selecting the next card? Compare the probabilities. (See Example 5.)
- 20. ANALYZING RELATIONSHIPS A bag contains 9 red marbles, 4 blue marbles, and 7 yellow marbles. You randomly select three marbles from the bag. What is the probability that all three marbles are red when (a) you replace each marble before selecting the next marble, and (b) you do not replace each marble before selecting the next marble? Compare the probabilities.
- **ATTEND TO PRECISION** The table shows the number of species in the United States listed as endangered and threatened. Find (a) the probability that a randomly selected endangered species is a bird, and (b) the probability that a randomly selected mammal is endangered. (See Example 6.)

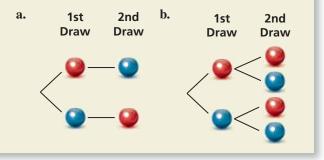
	Endangered	Threatened
Mammals	70	16
Birds	80	16
Other	318	142

22. ATTEND TO PRECISION The table shows the number of tropical cyclones that formed during the hurricane seasons over a 12-year period. Find (a) the probability to predict whether a future tropical cyclone in the Northern Hemisphere is a hurricane, and (b) the probability to predict whether a hurricane is in the Southern Hemisphere.

Type of Tropical Cyclone	Northern Hemisphere	Southern Hemisphere
tropical depression	100	107
tropical storm	342	487
hurricane	379	525

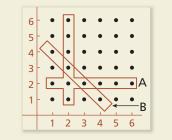
23. PROBLEM SOLVING At a school, 43% of students attend the homecoming football game. Only 23% of students go to the game and the homecoming dance. What is the probability that a student who attends the football game also attends the dance? (*See Example 7.*)

- 24. **PROBLEM SOLVING** At a gas station, 84% of customers buy gasoline. Only 5% of customers buy gasoline and a beverage. What is the probability that a customer who buys gasoline also buys a beverage?
- 25. PROBLEM SOLVING You and 19 other students volunteer to present the "Best Teacher" award at a school banquet. One student volunteer will be chosen to present the award. Each student worked at least 1 hour in preparation for the banquet. You worked for 4 hours, and the group worked a combined total of 45 hours. For each situation, describe a process that gives you a "fair" chance to be chosen, and find the probability that you are chosen.
 - a. "Fair" means equally likely.
 - b. "Fair" means proportional to the number of hours each student worked in preparation.
- 26. HOW DO YOU SEE IT? A bag contains one red marble and one blue marble. The diagrams show the possible outcomes of randomly choosing two marbles using different methods. For each method, determine whether the marbles were selected with or without replacement.



27. MAKING AN ARGUMENT A meteorologist claims that there is a 70% chance of rain. When it rains, there is a 75% chance that your softball game will be rescheduled. Your friend believes the game is more likely to be rescheduled than played. Is your friend correct? Explain your reasoning.

28. THOUGHT PROVOKING Two six-sided dice are rolled once. Events A and B are represented by the diagram. Describe each event. Are the two events dependent or independent? Justify your reasoning.



29. MODELING WITH MATHEMATICS A football team is losing by 14 points near the end of a game. The team scores two touchdowns (worth 6 points each) before the end of the game. After each touchdown, the coach must decide whether to go for 1 point with a kick (which is successful 99% of the time) or 2 points with a run or pass (which is successful 45% of the time).

- a. If the team goes for 1 point after each touchdown, what is the probability that the team wins? loses? ties?
- **b.** If the team goes for 2 points after each touchdown, what is the probability that the team wins? loses? ties?
- **c.** Can you develop a strategy so that the coach's team has a probability of winning the game that is greater than the probability of losing? If so, explain your strategy and calculate the probabilities of winning and losing the game.
- **30. ABSTRACT REASONING** Assume that A and B are independent events.
 - **a.** Explain why P(B) = P(B|A) and P(A) = P(A|B).
 - **b.** Can P(A and B) also be defined as $P(B) \cdot P(A \mid B)$? Justify your reasoning.

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Solve the equation. Check your solution. (Skills Review Handbook)

31. $\frac{9}{10}x = 0.18$

32. $\frac{1}{4}x + 0.5x = 1.5$ **33.** $0.3x - \frac{3}{5}x + 1.6 = 1.555$

10.3 Two-Way Tables and Probability

Essential Question How can you construct and interpret

a two-way table?

EXPLORATION 1 Completing and Using a Two-Way Table

Work with a partner. A *two-way table* displays the same information as a Venn diagram. In a two-way table, one category is represented by the rows and the other category is represented by the columns.

The Venn diagram shows the results of a survey in which 80 students were asked whether they play a musical instrument and whether they speak a foreign language. Use the Venn diagram to complete the two-way table. Then use the two-way table to answer each question.

	Play an Instrument	Do Not Play an Instrument	Total
Speak a Foreign Language			
Do Not Speak a Foreign Language			
Total			

- a. How many students play an instrument?
- b. How many students speak a foreign language?
- c. How many students play an instrument and speak a foreign language?
- d. How many students do not play an instrument and do not speak a foreign language?
- e. How many students play an instrument and do not speak a foreign language?

EXPLORATION 2 Two-Way Tables and Probability

Work with a partner. In Exploration 1, one student is selected at random from the 80 students who took the survey. Find the probability that the student

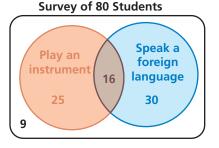
- **a.** plays an instrument.
- **b.** speaks a foreign language.
- c. plays an instrument and speaks a foreign language.
- **d.** does not play an instrument and does not speak a foreign language.
- e. plays an instrument and does not speak a foreign language.

EXPLORATION 3 Conducting a Survey

Work with your class. Conduct a survey of the students in your class. Choose two categories that are different from those given in Explorations 1 and 2. Then summarize the results in both a Venn diagram and a two-way table. Discuss the results.

Communicate Your Answer

- 4. How can you construct and interpret a two-way table?
- 5. How can you use a two-way table to determine probabilities?



MODELING WITH MATHEMATICS

To be proficient in math, you need to identify important quantities in a practical situation and map their relationships using such tools as diagrams and two-way tables.

10.3 Lesson

Core Vocabulary

two-way table, p. 554 joint frequency, p. 554 marginal frequency, p. 554 joint relative frequency, p. 555 marginal relative frequency, p. 555 conditional relative frequency, p. 555

Previous conditional probability

READING

A two-way table is also called a contingency table, or a two-way frequency table.

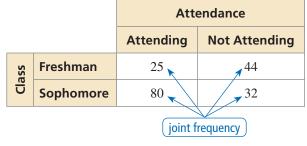
What You Will Learn

- Make two-way tables.
- Find relative and conditional relative frequencies.
- Use conditional relative frequencies to find conditional probabilities.

Making Two-Way Tables

A **two-way table** is a frequency table that displays data collected from one source that belong to two different categories. One category of data is represented by rows and the other is represented by columns. Suppose you randomly survey freshmen and sophomores about whether they are attending a school concert. A two-way table is one way to organize your results.

Each entry in the table is called a **joint frequency**. The sums of the rows and columns are called marginal frequencies, which you will find in



EXAMPLE 1

Example 1.

Making a Two-Way Table

In another survey similar to the one above, 106 juniors and 114 seniors respond. Of those, 42 juniors and 77 seniors plan on attending. Organize these results in a two-way table. Then find and interpret the marginal frequencies.

SOLUTION

- **Step 1** Find the joint frequencies. Because 42 of the 106 juniors are attending, 106 - 42 = 64 juniors are not attending. Because 77 of the 114 seniors are attending, 114 - 77 = 37 seniors are not attending. Place each joint frequency in its corresponding cell.
- **Step 2** Find the marginal frequencies. Create a new column and row for the sums. Then add the entries and interpret the results.

		Attendance		
		Attending	Not Attending	Total
Class	Junior	42	64	106
Ü	Senior	77	37	114
	Total	119	101	220
_				
(11	9 students a	are attending.	101 students are n	ot attendi

Step 3 Find the sums of the marginal frequencies. Notice the sums 106 + 114 = 220and 119 + 101 = 220 are equal. Place this value at the bottom right.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

1. You randomly survey students about whether they are in favor of planting a community garden at school. Of 96 boys surveyed, 61 are in favor. Of 88 girls surveyed, 17 are against. Organize the results in a two-way table. Then find and interpret the marginal frequencies.

Finding Relative and Conditional Relative Frequencies

You can display values in a two-way table as frequency counts (as in Example 1) or as *relative frequencies*.

ら Core Concept

Relative and Conditional Relative Frequencies

A **joint relative frequency** is the ratio of a frequency that is not in the total row or the total column to the total number of values or observations.

A **marginal relative frequency** is the sum of the joint relative frequencies in a row or a column.

A **conditional relative frequency** is the ratio of a joint relative frequency to the marginal relative frequency. You can find a conditional relative frequency using a row total or a column total of a two-way table.

EXAMPLE 2 Finding Joint and Marginal Relative Frequencies

Use the survey results in Example 1 to make a two-way table that shows the joint and marginal relative frequencies.

SOLUTION

To find the joint relative frequencies, divide each frequency by the total number of students in the survey. Then find the sum of each row and each column to find the marginal relative frequencies.

		Attendance			About 29.1% of the
		Attending	Not Attending	Total	students in the survey
Class	Junior	$\frac{42}{220} \approx 0.191$	$\frac{64}{220} \approx 0.291$	0.482	are juniors and are <i>not</i> attending the concert.
C	Senior	$\frac{77}{220} = 0.35$	$\frac{37}{220} \approx 0.168$	0.518	About 51.8% of the students in the survey
	Total	0.541	0.459	1	are seniors.

EXAMPLE 3

Finding Conditional Relative Frequencies

Use the survey results in Example 1 to make a two-way table that shows the conditional relative frequencies based on the row totals.

SOLUTION

Use the marginal relative frequency of each *row* to calculate the conditional relative frequencies.

		Attendance		
		Attending	Not Attending	Given that a student is a senior, the conditional
Class	Junior	$\frac{0.191}{0.482} \approx 0.396$	$\frac{0.291}{0.482} \approx 0.604$	relative frequency that he or she is <i>not</i>
Cla	Senior	$\frac{0.35}{0.518} \approx 0.676$	$\frac{0.168}{0.518} \approx 0.324$	attending the concert is about 32.4%.

Two-way tables can display relative frequencies based

STUDY TIP

on the total number of observations, the row totals, or the column totals.

INTERPRETING MATHEMATICAL RESULTS

> Relative frequencies can be interpreted as probabilities. The probability that a randomly selected student is a junior and is *not* attending the concert is 29.1%.

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

- **2.** Use the survey results in Monitoring Progress Question 1 to make a two-way table that shows the joint and marginal relative frequencies.
- **3.** Use the survey results in Example 1 to make a two-way table that shows the conditional relative frequencies based on the column totals. Interpret the conditional relative frequencies in the context of the problem.
- **4.** Use the survey results in Monitoring Progress Question 1 to make a two-way table that shows the conditional relative frequencies based on the row totals. Interpret the conditional relative frequencies in the context of the problem.

Finding Conditional Probabilities

You can use conditional relative frequencies to find conditional probabilities.

EXAMPLE 4

SOLUTION

Finding Conditional Probabilities

A satellite TV provider surveys customers in three cities. The survey asks whether they would recommend the TV provider to a friend. The results, given as joint relative frequencies, are shown in the two-way table.

		Location		
		Glendale	Santa Monica	Long Beach
onse	Yes	0.29	0.27	0.32
Response	No	0.05	0.03	0.04

- **a.** What is the probability that a randomly selected customer who is located in Glendale will recommend the provider?
- **b.** What is the probability that a randomly selected customer who will not recommend the provider is located in Long Beach?
- **c.** Determine whether recommending the provider to a friend and living in Long Beach are independent events.

a.
$$P(\text{yes}|\text{Glendale}) = \frac{P(\text{Glendale and yes})}{P(\text{Glendale})} = \frac{0.29}{0.29 + 0.05} \approx 0.853$$

So, the probability that a customer who is located in Glendale will recommend the provider is about 85.3%.

b.
$$P(\text{Long Beach}|\text{no}) = \frac{P(\text{no and Long Beach})}{P(\text{no})} = \frac{0.04}{0.05 + 0.03 + 0.04} \approx 0.333$$

- So, the probability that a customer who will not recommend the provider is located in Long Beach is about 33.3%.
- **c.** Use the formula P(B) = P(B|A) and compare P(Long Beach) and P(Long Beach|yes).

P(Long Beach) = 0.32 + 0.04 = 0.36

- $P(\text{Long Beach}|\text{yes}) = \frac{P(\text{Yes and Long Beach})}{P(\text{yes})} = \frac{0.32}{0.29 + 0.27 + 0.32} \approx 0.36$
- Because $P(\text{Long Beach}) \approx P(\text{Long Beach} | \text{yes})$, the two events are independent.

INTERPRETING MATHEMATICAL RESULTS

The probability 0.853 is a conditional relative frequency based on a column total. The condition is that the customer lives in Glendale.

Monitoring Progress (Help in English and Spanish at BigldeasMath.com

- **5.** In Example 4, what is the probability that a randomly selected customer who is located in Santa Monica will not recommend the provider to a friend?
- **6.** In Example 4, determine whether recommending the provider to a friend and living in Santa Monica are independent events. Explain your reasoning.

EXAMPLE 5 Comparing Conditional Probabilities

A jogger wants to burn a certain number of calories during his workout. He maps out three possible jogging routes. Before each workout, he randomly selects a route, and then determines the number of calories he burns and whether he reaches his goal. The table shows his findings. Which route should he use?

	Reaches Goal	Does Not Reach Goal
Route A	1111 THL	1111
Route B	1111 1111	1111
Route C	JHT JHT II	, 111L

SOLUTION

Step 1 Use the findings to make a two-way table that shows the joint and marginal relative frequencies. There are a total of 50 observations in the table.

Step 2 Find the conditional probabilities by dividing each joint relative frequency in the "Reaches Goal" column by the marginal relative frequency in its corresponding row.

nd marginal		2	Ke	esult	
are a total		U	Reaches Goal	Does Not Reach Goal	Total
		Α	0.22	0.12	0.34
	Ro 	В	0.22	0.08	0.30
		с	0.24	0.12	0.36
		Total	0.68	0.32	1

$$P(\text{reaches goal} | \text{Route A}) = \frac{P(\text{Route A and reaches goal})}{P(\text{Route A})} = \frac{0.22}{0.34} \approx 0.647$$

$$P(\text{reaches goal} | \text{Route B}) = \frac{P(\text{Route B and reaches goal})}{P(\text{Route B})} = \frac{0.22}{0.30} \approx 0.733$$

$$P(\text{reaches goal} | \text{Route C}) = \frac{P(\text{Route C and reaches goal})}{P(\text{Route C})} = \frac{0.24}{0.36} \approx 0.667$$

Based on the sample, the probability that he reaches his goal is greatest when he uses Route B. So, he should use Route B.

Monitoring Progress (Welp in English and Spanish at BigldeasMath.com

7. A manager is assessing three employees in order to offer one of them a promotion Over a period of time, the manager records whether the employees meet or exceed expectations on their assigned tasks. The table shows the manager's results. Which employee should be offered the promotion? Explain.

	Exceed Expectations	Meet Expectations
Joy	JHT IIII	
Elena	JHT JHT II	JHT 111
Sam		JHT

-Vocabulary and Core Concept Check

- **1. COMPLETE THE SENTENCE** A(n) ______ displays data collected from the same source that belongs to two different categories.
- **2. WRITING** Compare the definitions of joint relative frequency, marginal relative frequency, and conditional relative frequency.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, complete the two-way table.

3.		Preparation			
		Studied	Did Not Study	Total	
	Grade	Pass		6	
	Gra	Fail			10
		Total	38		50

4.		Response			
			Yes	No	Total
	Role	Student	56		
	Ro	Teacher		7	10
		Total		49	

5. MODELING WITH MATHEMATICS You survey 171 males and 180 females at Grand Central Station in New York City. Of those, 132 males and 151 females wash their hands after using the public rest rooms. Organize these results in a two-way table. Then find and interpret the marginal frequencies. (See Example 1.)

6. MODELING WITH MATHEMATICS A survey asks 60 teachers and 48 parents whether school uniforms reduce distractions in school. Of those, 49 teachers and 18 parents say uniforms reduce distractions in school. Organize these results in a two-way table. Then find and interpret the marginal frequencies. **USING STRUCTURE** In Exercises 7 and 8, use the two-way table to create a two-way table that shows the joint and marginal relative frequencies.

7.			Dominant Hand		
			Left	Right	Total
	Gender	Female	11	104	115
	Gen	Male	24	92	116
		Total	35	196	231

8.

		Gender		
		Male	Female	Total
nce	Expert	62	6	68
Experience	Average	275	24	299
Exp	Novice	40	3	43
	Total	377	33	410

- **9. MODELING WITH MATHEMATICS** Use the survey results from Exercise 5 to make a two-way table that shows the joint and marginal relative frequencies. (*See Example 2.*)
- 10. MODELING WITH MATHEMATICS In a survey, 49 people received a flu vaccine before the flu season and 63 people did not receive the vaccine. Of those who receive the flu vaccine, 16 people got the flu. Of those who did not receive the vaccine, 17 got the flu. Make a two-way table that shows the joint and marginal relative frequencies.

- **11. MODELING WITH MATHEMATICS** A survey finds that 110 people ate breakfast and 30 people skipped breakfast. Of those who ate breakfast, 10 people felt tired. Of those who skipped breakfast, 10 people felt tired. Make a two-way table that shows the conditional relative frequencies based on the breakfast totals. (See Example 3.)
- **12. MODELING WITH MATHEMATICS** Use the survey results from Exercise 10 to make a two-way table that shows the conditional relative frequencies based on the flu vaccine totals.
- **13. PROBLEM SOLVING** Three different local hospitals in New York surveyed their patients. The survey asked whether the patient's physician communicated efficiently. The results, given as joint relative frequencies, are shown in the two-way table. (*See Example 4.*)

			Location	
		Glens Falls	Saratoga	Albany
Response	Yes	0.123	0.288	0.338
Resp	No	0.042	0.077	0.131

- **a.** What is the probability that a randomly selected patient located in Saratoga was satisfied with the communication of the physician?
- **b.** What is the probability that a randomly selected patient who was not satisfied with the physician's communication is located in Glens Falls?
- **c.** Determine whether being satisfied with the communication of the physician and living in Saratoga are independent events.
- **14. PROBLEM SOLVING** A researcher surveys a random sample of high school students in seven states. The survey asks whether students plan to stay in their home state after graduation. The results, given as joint relative frequencies, are shown in the two-way table.

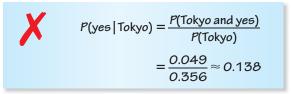
			Location	
		Nebraska	North Carolina	Other States
Response	Yes	0.044	0.051	0.056
	No	0.400	0.193	0.256

- **a.** What is the probability that a randomly selected student who lives in Nebraska plans to stay in his or her home state after graduation?
- **b.** What is the probability that a randomly selected student who does not plan to stay in his or her home state after graduation lives in North Carolina?
- **c.** Determine whether planning to stay in their home state and living in Nebraska are independent events.

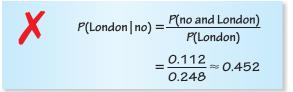
ERROR ANALYSIS In Exercises 15 and 16, describe and correct the error in finding the given conditional probability.

			City			
		Tokyo	London	Washington, D.C.	Total	
	Response	Yes	0.049	0.136	0.171	0.356
	Resp	No	0.341	0.112	0.191	0.644
		Total	0.39	0.248	0.362	1

15. P(yes | Tokyo)



16. P(London|no)



17. PROBLEM SOLVING You want to find the quickest route to school. You map out three routes. Before school, you randomly select a route and record whether you are late or on time. The table shows your findings. Assuming you leave at the same time each morning, which route should you use? Explain. (*See Example 5.*)

	On Time	Late
Route A	JHT 11	1111
Route B		111
Route C	JHT JHT II][]]

18. PROBLEM SOLVING A teacher is assessing three groups of students in order to offer one group a prize. Over a period of time, the teacher records whether the groups meet or exceed expectations on their assigned tasks. The table shows the teacher's results. Which group should be awarded the prize? Explain.

	Exceed Expectations	Meet Expectations
Group 1	JHT JHT II	1111
Group 2	JHT III	,HHL
Group 3		1111

- **19. OPEN-ENDED** Create and conduct a survey in your class. Organize the results in a two-way table. Then create a two-way table that shows the joint and marginal frequencies.
- **20. HOW DO YOU SEE IT?** A research group surveys parents and coaches of high school students about whether competitive sports are important in school. The two-way table shows the results of the survey.

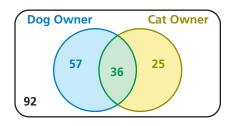
		Role		
		Parent	Coach	Total
rtant	Yes	880	456	1336
Important	No	120	45	165
	Total	1000	501	1501

- **a.** What does 120 represent?
- **b.** What does 1336 represent?
- c. What does 1501 represent?
- **21. MAKING AN ARGUMENT** Your friend uses the table below to determine which workout routine is the best. Your friend decides that Routine B is the best option because it has the fewest tally marks in the "Does Not Reach Goal" column. Is your friend correct? Explain your reasoning.

	Reached Goal	Does Not Reach Goal
Routine A	.HHr	111
Routine B	1111	ll
Routine C	JHT II	Ш

22. MODELING WITH MATHEMATICS A survey asks students whether they prefer math class or science class. Of the 150 male students surveyed, 62% prefer math class over science class. Of the female students surveyed, 74% prefer math. Construct a two-way table to show the number of students in each category if 350 students were surveyed.

23. MULTIPLE REPRESENTATIONS Use the Venn diagram to construct a two-way table. Then use your table to answer the questions.



- a. What is the probability that a randomly selected person does not own either pet?
- **b.** What is the probability that a randomly selected person who owns a dog also owns a cat?
- 24. WRITING Compare two-way tables and Venn diagrams. Then describe the advantages and disadvantages of each.
- 25. **PROBLEM SOLVING** A company creates a new snack, N, and tests it against its current leader, L. The table shows the results.

	Prefer L	Prefer N
Current L Consumer	72	46
Not Current L Consumer	52	114

The company is deciding whether it should try to improve the snack before marketing it, and to whom the snack should be marketed. Use probability to explain the decisions the company should make when the total size of the snack's market is expected to (a) change very little, and (b) expand very rapidly.

26. THOUGHT PROVOKING Bayes' Theorem is given by

$$P(A \mid B) = \frac{P(B \mid A) \bullet P(A)}{P(B)}$$

Use a two-way table to write an example of Bayes' Theorem.

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Draw a Venn diagram of the sets described. (Skills Review Handbook)

- **27.** Of the positive integers less than 15, set A consists of the factors of 15 and set B consists of all odd numbers.
- **28.** Of the positive integers less than 14, set A consists of all prime numbers and set B consists of all even numbers.
- **29.** Of the positive integers less than 24, set A consists of the multiples of 2 and set B consists of all the multiples of 3.

10.1–10.3 What Did You Learn?

Core Vocabulary

probability experiment, *p. 538* outcome, *p. 538* event, *p. 538* sample space, *p. 538* probability of an event, *p. 538* theoretical probability, *p. 539* geometric probability, *p. 540* experimental probability, *p. 541* independent events, *p. 546* dependent events, *p. 547* conditional probability, *p. 547* two-way table, *p. 554* joint frequency, p. 554 marginal frequency, p. 554 joint relative frequency, p. 555 marginal relative frequency, p. 555 conditional relative frequency, p. 555

Core Concepts

Section 10.1

Theoretical Probabilities, *p. 538* Probability of the Complement of an Event, *p. 539* Experimental Probabilities, *p. 541*

Section 10.2

Probability of Independent Events, *p. 546* Probability of Dependent Events, *p. 547* Finding Conditional Probabilities, *p. 549*

Section 10.3

Making Two-Way Tables, *p. 554* Relative and Conditional Relative Frequencies, *p. 555*

Mathematical Practices

- **1.** How can you use a number line to analyze the error in Exercise 12 on page 542?
- **2.** Explain how you used probability to correct the flawed logic of your friend in Exercise 21 on page 560.

Making a Mental Cheat Sheet

- Write down important information on note cards.
- Memorize the information on the note cards, placing the ones containing information you know in one stack and the ones containing information you do not know in another stack. Keep working on the information you do not know.

10.1–10.3 Quiz

1. You randomly draw a marble out of a bag containing 8 green marbles, 4 blue marbles, 12 yellow marbles, and 10 red marbles. Find the probability of drawing a marble that is not yellow. (*Section 10.1*)

Find $P(\overline{A})$. (Section 10.1)

2. P(A) = 0.32

4. P(A) = 0.01

5. You roll a six-sided die 30 times. A 5 is rolled 8 times. What is the theoretical probability of rolling a 5? What is the experimental probability of rolling a 5? (*Section 10.1*)

3. $P(A) = \frac{8}{9}$

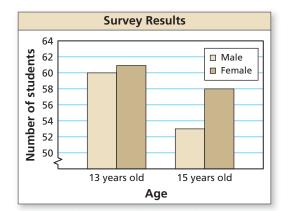
6. Events *A* and *B* are independent. Find the missing probability. (Section 10.2)

P(A) = 0.25 $P(B) = _____$ P(A and B) = 0.05

7. Events A and B are dependent. Find the missing probability. (Section 10.2)

P(A) = 0.6P(B|A) = 0.2 $P(A \text{ and } B) = _$

- **8.** Find the probability that a dart thrown at the circular target shown will hit the given region. Assume the dart is equally likely to hit any point inside the target. (*Section 10.1*)
 - **a.** the center circle
 - **b.** outside the square
 - c. inside the square but outside the center circle
- **9.** A survey asks 13-year-old and 15-year-old students about their eating habits. Four hundred students are surveyed, 100 male students and 100 female students from each age group. The bar graph shows the number of students who said they eat fruit every day. (*Section 10.2*)
 - **a.** Find the probability that a female student, chosen at random from the students surveyed, eats fruit every day.
 - **b.** Find the probability that a 15-year-old student, chosen at random from the students surveyed, eats fruit every day.
- **10.** There are 14 boys and 18 girls in a class. The teacher allows the students to vote whether they want to take a test on Friday or on Monday. A total of 6 boys and 10 girls vote to take the test on Friday. Organize the information in a two-way table. Then find and interpret the marginal frequencies. *(Section 10.3)*



11. Three schools compete in a cross country invitational. Of the 15 athletes on your team, 9 achieve their goal times. Of the 20 athletes on the home team, 6 achieve their goal times. On your rival's team, 8 of the 13 athletes achieve their goal times. Organize the information in a two-way table. Then determine the probability that a randomly selected runner who achieves his or her goal time is from your school. (Section 10.3)

10.4 Probability of Disjoint and Overlapping Events

Essential Question How can you find probabilities of disjoint and overlapping events?

Two events are **disjoint**, or **mutually exclusive**, when they have no outcomes in common. Two events are **overlapping** when they have one or more outcomes in common.

EXPLORATION 1 Disjoi

Disjoint Events and Overlapping Events

Work with a partner. A six-sided die is rolled. Draw a Venn diagram that relates the two events. Then decide whether the events are disjoint or overlapping.

- **a.** Event *A*: The result is an even number. Event *B*: The result is a prime number.
- **b.** Event *A*: The result is 2 or 4. Event *B*: The result is an odd number.

EXPLORATION 2

Finding the Probability that Two Events Occur

Work with a partner. A six-sided die is rolled. For each pair of events, find (a) P(A), (b) P(B), (c) P(A and B), and (d) P(A or B).

- **a.** Event *A*: The result is an even number. Event *B*: The result is a prime number.
- **b.** Event *A*: The result is 2 or 4. Event *B*: The result is an odd number.

EXPLORATION 3 Discovering Probability Formulas

Work with a partner.

- **a.** In general, if event *A* and event *B* are disjoint, then what is the probability that event *A* or event *B* will occur? Use a Venn diagram to justify your conclusion.
- **b.** In general, if event *A* and event *B* are overlapping, then what is the probability that event *A* or event *B* will occur? Use a Venn diagram to justify your conclusion.
- **c.** Conduct an experiment using a six-sided die. Roll the die 50 times and record the results. Then use the results to find the probabilities described in Exploration 2. How closely do your experimental probabilities compare to the theoretical probabilities you found in Exploration 2?

Communicate Your Answer

- 4. How can you find probabilities of disjoint and overlapping events?
- 5. Give examples of disjoint events and overlapping events that do not involve dice.

MODELING WITH

To be proficient in math, you need to map the relationships between important quantities in a practical situation using - such tools as diagrams.

10.4 Lesson

Core Vocabulary

compound event, *p. 564* overlapping events, *p. 564* disjoint or mutually exclusive events, *p. 564*

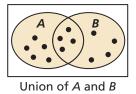
Previous Venn diagram

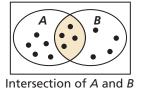
What You Will Learn

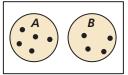
- Find probabilities of compound events.
- Use more than one probability rule to solve real-life problems.

Compound Events

When you consider all the outcomes for either of two events A and B, you form the *union* of A and B, as shown in the first diagram. When you consider only the outcomes shared by both A and B, you form the *intersection* of A and B, as shown in the second diagram. The union or intersection of two events is called a **compound event**.







Intersection of A and B is empty.

To find P(A or B) you must consider what outcomes, if any, are in the intersection of A and B. Two events are **overlapping** when they have one or more outcomes in common, as shown in the first two diagrams. Two events are **disjoint**, or **mutually exclusive**, when they have no outcomes in common, as shown in the third diagram.

G Core Concept

Probability of Compound Events

If A and B are any two events, then the probability of A or B is

P(A or B) = P(A) + P(B) - P(A and B).

If A and B are disjoint events, then the probability of A or B is

P(A or B) = P(A) + P(B).

EXAMPLE 1

Finding the Probability of Disjoint Events

A card is randomly selected from a standard deck of 52 playing cards. What is the probability that it is a 10 *or* a face card?

SOLUTION

Let event A be selecting a 10 and event B be selecting a face card. From the diagram, A has 4 outcomes and B has 12 outcomes. Because A and B are disjoint, the probability is

P(A or B) = P(A) + P(B)	Write disjoint probability formula.	
$=\frac{4}{52}+\frac{12}{52}$	Substitute known probabilities.	
$=\frac{16}{52}$	Add.	
$=\frac{4}{13}$	Simplify.	
$\approx 0.308.$	Use a calculator.	

STUDY TIP

If two events A and Bare overlapping, then the outcomes in the intersection of A and B are counted *twice* when P(A)and P(B) are added. So, P(A and B) must be subtracted from the sum.

В

K♥Q♠Q

Α

10 10

10 • 10 •

COMMON ERROR

When two events A and B overlap, as in Example 2, P(A or B) does not equal P(A) + P(B).

Finding the Probability of Overlapping Events

A card is randomly selected from a standard deck of 52 playing cards. What is the probability that it is a face card or a spade?

SOLUTION

Let event A be selecting a face card and event B be selecting a spade. From the diagram, A has 12 outcomes and *B* has 13 outcomes. Of these, 3 outcomes are common to A and B. So, the probability of selecting a face card or a spade is



P(A or B) = P(A) + P(B) - P(A and B)	Write general formula.
$=\frac{12}{52}+\frac{13}{52}-\frac{3}{52}$	Substitute known probabilities.
$=\frac{22}{52}$	Add.
$=\frac{11}{26}$	Simplify.
≈ 0.423.	Use a calculator.

EXAMPLE 3

Using a Formula to Find P(A and B)

Out of 200 students in a senior class, 113 students are either varsity athletes or on the honor roll. There are 74 seniors who are varsity athletes and 51 seniors who are on the honor roll. What is the probability that a randomly selected senior is both a varsity athlete and on the honor roll?

SOLUTION

Let event A be selecting a senior who is a varsity athlete and event B be selecting a senior on the honor roll. From the given information, you know that $P(A) = \frac{74}{200}$, $P(B) = \frac{51}{200}$, and $P(A \text{ or } B) = \frac{113}{200}$. The probability that a randomly selected senior is both a varsity athlete and on the honor roll is P(A and B).

P(A or B) = P(A) + P(B) - P(A and B)	Write general formula.
$\frac{113}{200} = \frac{74}{200} + \frac{51}{200} - P(A \text{ and } B)$	Substitute known probabilities.
$P(A \text{ and } B) = \frac{74}{200} + \frac{51}{200} - \frac{113}{200}$	Solve for <i>P</i> (<i>A</i> and <i>B</i>).
$P(A \text{ and } B) = \frac{12}{200}$	Simplify.
$P(A \text{ and } B) = \frac{3}{50}, \text{ or } 0.06$	Simplify.

Monitoring Progress (1) Help in English and Spanish at BigldeasMath.com

A card is randomly selected from a standard deck of 52 playing cards. Find the probability of the event.

- 1. selecting an ace or an 8 2. selecting a 10 or a diamond
- **3.** WHAT IF? In Example 3, suppose 32 seniors are in the band and 64 seniors are in the band or on the honor roll. What is the probability that a randomly selected senior is both in the band and on the honor roll?

Using More Than One Probability Rule

In the first four sections of this chapter, you have learned several probability rules. The solution to some real-life problems may require the use of two or more of these probability rules, as shown in the next example.

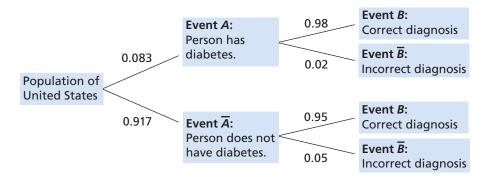
EXAMPLE 4 Solving a Real-Life Problem

The American Diabetes Association estimates that 8.3% of people in the United States have diabetes. Suppose that a medical lab has developed a simple diagnostic test for diabetes that is 98% accurate for people who have the disease and 95% accurate for people who do not have it. The medical lab gives the test to a randomly selected person. What is the probability that the diagnosis is correct?

SOLUTION

Let event *A* be "person has diabetes" and event *B* be "correct diagnosis." Notice that the probability of *B* depends on the occurrence of *A*, so the events are dependent. When *A* occurs, P(B) = 0.98. When *A* does not occur, P(B) = 0.95.

A probability tree diagram, where the probabilities are given along the branches, can help you see the different ways to obtain a correct diagnosis. Use the complements of events *A* and *B* to complete the diagram, where \overline{A} is "person does not have diabetes" and \overline{B} is "incorrect diagnosis." Notice that the probabilities for all branches from the same point must sum to 1.



To find the probability that the diagnosis is correct, follow the branches leading to event B.

$P(B) = P(A \text{ and } B) + P(\overline{A} \text{ and } B)$	Use tree diagram.
$= P(A) \bullet P(B A) + P(\overline{A}) \bullet P(B \overline{A})$	Probability of dependent events
= (0.083)(0.98) + (0.917)(0.95)	Substitute.
≈ 0.952	Use a calculator.

The probability that the diagnosis is correct is about 0.952, or 95.2%.

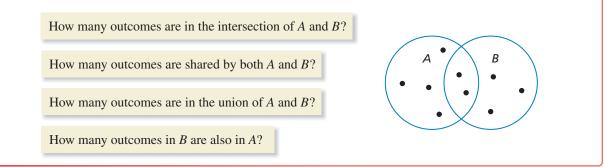
Monitoring Progress Help in English and Spanish at BigldeasMath.com

- 4. In Example 4, what is the probability that the diagnosis is *incorrect*?
- **5.** A high school basketball team leads at halftime in 60% of the games in a season. The team wins 80% of the time when they have the halftime lead, but only 10% of the time when they do not. What is the probability that the team wins a particular game during the season?

10.4 Exercises

Vocabulary and Core Concept Check

- 1. WRITING Are the events A and \overline{A} disjoint? Explain. Then give an example of a real-life event and its complement.
- 2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.



Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, events *A* and *B* are disjoint. Find *P*(*A* or *B*).

- **3.** P(A) = 0.3, P(B) = 0.1 **4.** P(A) = 0.55, P(B) = 0.2
- **5.** $P(A) = \frac{1}{3}, P(B) = \frac{1}{4}$ **6.** $P(A) = \frac{2}{3}, P(B) = \frac{1}{5}$

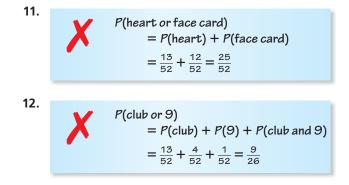
7. PROBLEM SOLVING

Your dart is equally likely to hit any point inside the board shown. You throw a dart and pop a balloon. What is the probability that the balloon is red or blue? (See Example 1.)

- **8. PROBLEM SOLVING** You and your friend are among several candidates running for class president. You estimate that there is a 45% chance you will win and a 25% chance your friend will win. What is the probability that you or your friend win the election?
- **9. PROBLEM SOLVING** You are performing an experiment to determine how well plants grow under different light sources. Of the 30 plants in the experiment, 12 receive visible light, 15 receive ultraviolet light, and 6 receive both visible and ultraviolet light. What is the probability that a plant in the experiment receives visible or ultraviolet light? (*See Example 2.*)

10. PROBLEM SOLVING Of 162 students honored at an academic awards banquet, 48 won awards for mathematics and 78 won awards for English. There are 14 students who won awards for both mathematics and English. A newspaper chooses a student at random for an interview. What is the probability that the student interviewed won an award for English or mathematics?

ERROR ANALYSIS In Exercises 11 and 12, describe and correct the error in finding the probability of randomly drawing the given card from a standard deck of 52 playing cards.



In Exercises 13 and 14, you roll a six-sided die. Find *P*(*A* or *B*).

- **13.** Event *A*: Roll a 6. Event *B*: Roll a prime number.
- **14.** Event *A*: Roll an odd number. Event *B*: Roll a number less than 5.

15. DRAWING CONCLUSIONS A group of 40 trees in a forest are not growing properly. A botanist determines

that 34 of the trees have a disease or are being damaged by insects, with 18 trees having a disease and 20 being damaged by insects. What is the probability that a randomly selected tree has both a disease and is being damaged by insects? (See Example 3.)

- 16. DRAWING CONCLUSIONS A company paid overtime wages or hired temporary help during 9 months of the year. Overtime wages were paid during 7 months, and temporary help was hired during 4 months. At the end of the year, an auditor examines the accounting records and randomly selects one month to check the payroll. What is the probability that the auditor will select a month in which the company paid overtime wages and hired temporary help?
- 17. DRAWING CONCLUSIONS A company is focus testing a new type of fruit drink. The focus group is 47% male. Of the responses, 40% of the males and 54% of the females said they would buy the fruit drink. What is the probability that a randomly selected person would buy the fruit drink? (See Example 4.)
- 18. DRAWING CONCLUSIONS The Redbirds trail the Bluebirds by one goal with 1 minute left in the hockey game. The Redbirds' coach must decide whether to remove the goalie and add a frontline player. The probabilities of each team scoring are shown in the table.

	Goalie	No goalie
Redbirds score	0.1	0.3
Bluebirds score	0.1	0.6

- a. Find the probability that the Redbirds score and the Bluebirds do not score when the coach leaves the goalie in.
- **b.** Find the probability that the Redbirds score and the Bluebirds do not score when the coach takes the goalie out.
- c. Based on parts (a) and (b), what should the coach do?

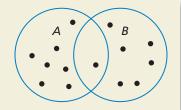
Maintaining Mathematical Proficiency

Write the first six terms of the sequence. (Section 8.5)

```
19. PROBLEM SOLVING You can win concert tickets from
     a radio station if you are the first person to call when
     the song of the day is played, or if you are the first
     person to correctly answer the trivia question. The song
     of the day is announced at a random time between
     7:00 and 7:30 A.M. The trivia question is asked at
     a random time between 7:15 and 7:45 A.M. You
     begin listening to the radio station at 7:20. Find the
     probability that you miss the announcement of the
    song of the day or the trivia question.
```

20. HOW DO YOU SEE IT? Are events A and B disjoint events? Explain your

reasoning.



21. **PROBLEM SOLVING** You take a bus from your neighborhood to your school. The express bus arrives at your neighborhood at a random time between 7:30 and 7:36 A.M. The local bus arrives at your neighborhood at a random time between 7:30 and 7:40 A.M. You arrive at the bus stop at 7:33 A.M. Find the probability that you missed both the express bus and the local bus.

- 22. THOUGHT PROVOKING Write a general rule for finding P(A or B or C) for (a) disjoint and (b) overlapping events A, B, and C.
- 23. MAKING AN ARGUMENT A bag contains 40 cards numbered 1 through 40 that are either red or blue. A card is drawn at random and placed back in the bag. This is done four times. Two red cards are drawn, numbered 31 and 19, and two blue cards are drawn. numbered 22 and 7. Your friend concludes that red cards and even numbers must be mutually exclusive. Is your friend correct? Explain.

Reviewing what you learned in previous grades and lessons

26.
$$a_1 = 2, a_2 = 6, a_n = \frac{(n+1)a_{n-1}}{a_{n-2}}$$

24. $a_1 = 4, a_n = 2a_{n-1} + 3$ **25.** $a_1 = 1, a_n = \frac{n(n-1)}{n}$

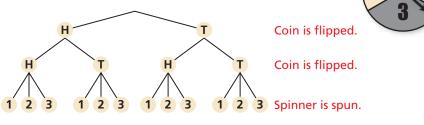
$$a_{n-1}$$

10.5 Permutations and Combinations

Essential Question How can a tree diagram help you visualize the number of ways in which two or more events can occur?

EXPLORATION 1 Reading a Tree Diagram

Work with a partner. Two coins are flipped and the spinner is spun. The tree diagram shows the possible outcomes.

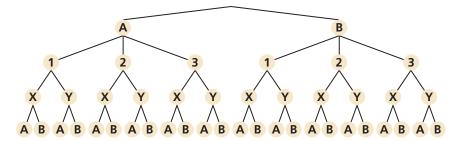


a. How many outcomes are possible?

b. List the possible outcomes.

EXPLORATION 2 Reading a Tree Diagram

Work with a partner. Consider the tree diagram below.



- **a.** How many events are shown?
- **b.** What outcomes are possible for each event?
- **c.** How many outcomes are possible? **d.** List the possible outcomes.

EXPLORATION 3 Writing a Conjecture

Work with a partner.

- **a.** Consider the following general problem: Event 1 can occur in *m* ways and event 2 can occur in *n* ways. Write a conjecture about the number of ways the two events can occur. Explain your reasoning.
- **b.** Use the conjecture you wrote in part (a) to write a conjecture about the number of ways *more than* two events can occur. Explain your reasoning.
- c. Use the results of Explorations 1(a) and 2(c) to verify your conjectures.

Communicate Your Answer

- **4.** How can a tree diagram help you visualize the number of ways in which two or more events can occur?
- **5.** In Exploration 1, the spinner is spun a second time. How many outcomes are possible?

CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to make conjectures and build a logical progression of statements to explore the truth of your conjectures.

10.5 Lesson

Core Vocabulary

permutation, p. 570 n factorial, p. 570 combination, p. 572 Binomial Theorem, p. 574

Previous

Fundamental Counting Principle Pascal's Triangle

What You Will Learn

- Use the formula for the number of permutations.
- Use the formula for the number of combinations.
- Use combinations and the Binomial Theorem to expand binomials.

Permutations

A **permutation** is an arrangement of objects in which order is important. For instance, the 6 possible permutations of the letters A, B, and C are shown.

ABC ACB BAC BCA CAB CBA

EXAMPLE 1

Counting Permutations

Consider the number of permutations of the letters in the word JULY. In how many ways can you arrange (a) all of the letters and (b) 2 of the letters?

SOLUTION

a. Use the Fundamental Counting Principle to find the number of permutations of the letters in the word JULY.

Number of
permutations =
$$\binom{\text{Choices for}}{1 \text{ st letter}} \binom{\text{Choices for}}{2 \text{ nd letter}} \binom{\text{Choices for}}{3 \text{ rd letter}} \binom{\text{Choices for}}{4 \text{ th letter}}$$

= 4 • 3 • 2 • 1
= 24

There are 24 ways you can arrange all of the letters in the word JULY.

b. When arranging 2 letters of the word JULY, you have 4 choices for the first letter and 3 choices for the second letter.

Number of permutations = $\binom{\text{Choices for}}{1 \text{ st letter}} \binom{\text{Choices for}}{2 \text{ nd letter}}$ = 4 • 3 = 12

There are 12 ways you can arrange 2 of the letters in the word JULY.

Monitoring Progress A Help in English and Spanish at BigldeasMath.com

- **1.** In how many ways can you arrange the letters in the word HOUSE?
- 2. In how many ways can you arrange 3 of the letters in the word MARCH?

In Example 1(a), you evaluated the expression $4 \cdot 3 \cdot 2 \cdot 1$. This expression can be written as 4! and is read "4 *factorial*." For any positive integer *n*, the product of the integers from 1 to *n* is called *n* factorial and is written as

 $n! = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 3 \cdot 2 \cdot 1.$

As a special case, the value of 0! is defined to be 1.

In Example 1(b), you found the permutations of 4 objects taken 2 at a time. You can find the number of permutations using the formulas on the next page.

REMEMBER

Fundamental Counting Principle: If one event can occur in m ways and another event can occur in n ways, then the number of ways that both events can occur is $m \cdot n$. The Fundamental Counting Principle can be extended to three or more events.