Multiple Transformations for Absolute Value and Quadratic Functions

When finding the equation of absolute value or quadratic functions from a graph in the form \(f(x) = a(x - h)^2 + k \) or \(f(x) = a|x - h| + k \), follow these steps:

1. Figure out what kind of parent function it is:
 - V-shaped \(\rightarrow \) Absolute value function so \(f(x) = a|x - h| + k \)
 - U-shaped/parabola \(\rightarrow f(x) = a(x - h)^2 + k \)
2. Find the vertex. This will give you \(h \) and \(k \).
3. Plug the vertex into the above equation for the correct parent function. Remember, if \(h \) is negative, it will become + inside the absolute value/parentheses since two negatives equals a positive.
4. If the function is opening downward, you know it’s a reflection and there will be a negative sign in front of the absolute value/parentheses.
5. Lastly, find \(a \). To do this, find another point that’s on your graph besides the vertex. If you use the vertex, this will not work! Plug the point in for \(x \) and \(y \) (\(f(x) \)) in your equation. You should have the \(h \) and \(k \) already filled in from the vertex and you now will have \(x \) and \(y \) filled in as well. The only variable left should be \(a \). Solve your equation for \(a \).
6. In your final equation, you should have \(h \) and \(k \) from the vertex and \(a \) from the previous step filled in. You should not have anything filled in for \(x \) and \(y \) as this point is dependent on the actual graph. Voila! You’re done!

Example #1:

Step 1: Since this is u-shaped/parabola, use the general form of the function: \(f(x) = a(x - h)^2 + k \)
Step 2: Find the vertex \(\rightarrow (2,1) \). Thus, \(h=2 \) and \(k=1 \).
Step 3: Plug \(h \) and \(k \) into the equation: \(f(x) = a(x - 2)^2 + 1 \)
Step 4: Since the parabola is opening up, it is not a reflection and thus, there will be no negative sign.
Step 5: We need to pick another point on the parabola that’s not the vertex. For this, I’ll use \((5,4) \). Now, plug this into your equation for step 3. \(x=5 \) and \(y \) or \(f(x) = 4 \). So our new equation is \(4 = a(5 - 2)^2 + 1 \). Solve your new equation.

 \[
 4 = a(5 - 2)^2 + 1 \\
 4 = a(3)^2 + 1 \\
 4 = 9a + 1 \\
 3 = 9a \\
 a = \frac{1}{3}
 \]
Step 6: Plug the values for \(h \), \(k \), and \(a \) back into your general form of the equation and you’re done!

\[
f(x) = \frac{1}{3} (x - 2)^2 + 1
\]

Example #2:

Step 1: Since this is v-shaped, use the general form of the function: \(f(x) = a|x - h| + k \)
Step 2: Find the vertex \(\rightarrow (-1,2) \). Thus, \(h=-1 \) and \(k=2 \).
Step 3: Plug \(h \) and \(k \) into the equation: \(f(x) = a|x + 1| + 2 \) **Note: Since \(h \) is negative, it becomes + inside the absolute value.
Step 4: Since the parabola is opening down, it is a reflection and thus, there will be a negative sign in front of the absolute value.
Step 5: We need to pick another point on the parabola that’s not the vertex. For this, I’ll use \((0,0) \). Now, plug this into your equation for step 3. \(x=0 \) and \(y \) or \(f(x) = 0 \). So our new equation is \(0 = a|0 + 1| + 2 \). Solve your new equation.

 \[
 0 = a|0 + 1| + 2 \\
 0 = a|1| + 2 \\
 0 = 1a + 2 \\
 -2 = 1a \\
 a = -2
 \]
Step 6: Plug the values for \(h \), \(k \), and \(a \) back into your general form of the equation and you’re done!

\[
f(x) = -2|x + 1| + 2
\]